The attempts to oral delivery of lipids can be challenging. Self-emulsifying drug delivery system (SEDDS) plays a vital role to tackle this problem. SEDDS is composed of an oil phase, surfactants, co-surfactants, emulsifying agents, and co-solvents. SEDDS can be categorized into self-nano-emulsifying agents (SNEDDS) and self-micro-emulsifying agents (SMEDDS). The characterization of SEDDS includes size, zeta potential analysis, and surface morphology via electron microscopy and phase separation methods. SEDDS can be well characterized through different techniques for size and morphology. Supersaturation is the phenomenon applied in case of SEDDS, in which polymers and copolymers are used for SEDDS preparation. A supersaturated SEDDS formulation kinetically and thermodynamically inhibits the precipitation of drug molecules by retarding nucleation and crystal growth in the aqueous medium. Self-emulsification approach has been successful in the delivery of anti-cancer agents, anti-viral drugs, anti-bacterial, immunosuppressant, and natural products such as antioxidants as well as alkaloids. At present, more than four SEDDS drug products are available in the market. SEDDS have tremendous capabilities which are yet to be explored which would be beneficial in oral lipid delivery.
Targeted delivery of therapeutics forestalls the dreadful delocalized effects, drug toxicities and needless immunosuppression. Cancer cells are bounteous with sialic acid and the differential expression of glycosyl transferase, glycosidase and monosaccharide transporter compared to healthy tissues. The current study entails the development and characterisation of sialic acid (SA)-labelled chitosan nanoparticles encapsulating gemcitabine (GEM). Chitosan (CS) was conjugated with SA using coupling reaction and characterised spectroscopically. Furthermore, different concentrations of chitosan and tripolyphosphate (TPP) were optimised to fabricate surface modified chitosan nanoparticles. SA conjugated chitosan nanoparticles encapsulating GEM (SA-CS_GEM NPs) of 232 ± 9.69 nm with narrow distribution (PDI < 0.5) and zeta potential of − 19 ± 0.97 mV was fabricated. GEM was successfully loaded in the SA-CS NPs, depicting prolonged and biphasic drug release pattern more elated at low pH. Pronounced cellular uptake (FITC tagged) and cytotoxicity (IC 50 487.4 nM) was observed in SA-CS_GEM NPs against A549 cells. IC 50 for SA-CS_GEM NPs plunged with an increase in the time points from 24 to 72 h. Concentration-dependent haemolytic study confirmed significant haemocompatibility of SA-CS_GEM NPs. Pharmacokinetic study was performed on Sprague-Dawley rats and the kinetic parameters were calculated using PKSolver 2.0. Results demonstrated a consequential refinement of 2.98 times in modified SA-CS_GEM NPs with a significant increase in retention time, bioavailability and elimination half-life, and decrease in elimination rate constant and volume of distribution in comparison to CS_GEM NPs. Therefore, SA-CS shell core nanoparticles could be a beneficial approach to target and treat NSCLC (non-small cell lung cancer) and direct for research possibilities to target the other tumour cells.
Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.