Research in the field of underwater (UW) robotic applications is rapidly developing. The emergence of coupling the newest technologies on submersibles, different types of telecommunication devices, sensors, and soft robots is transforming the rigid approach to robotic design by providing solutions that bridge the gap between accuracy and adaptability in an environment where there is so much fluctuation in object targeting and environmental conditions. In this paper, we represent a review of the history, development, recent research endeavors, and projected outlook for the area of soft robotics technology pertaining to its use with tactile sensing in the UW environment.
Tactile information is crucial for recognizing physical interactions, manipulation of an object, and motion planning for a robotic gripper; however, concurrent tactile technologies have certain limitations over directional force sensing. In particular, they are expensive, difficult to fabricate, and mostly unsuitable for underwater use. Here, we present a facile and cost-effective synthesis technique of a flexible multi-directional force sensing system, which is also favorable to be utilized in underwater environments. We made use of four flex sensors within a silicone-made hemispherical shell structure. Each sensor was placed 90° apart and aligned with the curve of the hemispherical shape. If the force is applied on the top of the hemisphere, all the flex sensors would bend uniformly and yield nearly identical readings. When force is applied from a different direction, a set of flex sensors would characterize distinctive output patterns to localize the point of contact as well as the direction and magnitude of the force. The deformation of the fabricated soft sensor due to applied force was simulated numerically and compared with the experimental results. The fabricated sensor was experimentally calibrated and tested for characterization including an underwater demonstration. This study would widen the scope of identification of multi-directional force sensing, especially for underwater soft robotic applications.
Monolayer antimonene has drawn the attention of research communities due to its promising physical properties. However, mechanical properties of antimonene is remained largely unexplored. In this work, we investigate the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.