Nowadays, air pollution is getting an extreme problem that affects the whole environment. Due to the dangerous effects of air pollution on human’s health, this study proposes an air pollution prediction system. Because of the high dust pollution in Saudi Arabia, and the fact that there is no system for predicting the percentage of air pollution in it, this study applies an air pollution prediction system to the most affected area in Saudi Arabia. This paper aims to forecast the concentrations of PM10 particles due to their dangerous effects. This study aims to align with the Saudi vision 2030 by having an ideal environment and act in an efficient way in case of a warning situation. It applies a deep learning technique, which called Long Short-Term Memory (LSTM) to predict the air pollution in Saudi Arabia and achieved exceptional results due to the low error rates that have been obtained by this study. The error rate of Mean Absolute Error (MAE) is 0.98, for Root Mean Square Error (RMSE) is 8.68 and 0.999 for R-Squared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.