The thyroid nodule is one of the endocrine issues caused by an irregular cell development. This rate of survival can be improved by earlier nodule detection. Accordingly, the accurate recognition of the nodule is of the utmost importance in providing powerful results in building the survival rate. The reduction in the accuracy of manual or semiautomatic segmentation methods for thyroid nodule detection is due to many factors, basically, the lack of experience of the sonographer and latency of operation. Most lesion regions in ultrasound images are homogeneous. Therefore, the value of entropy in these regions is high compared to its neighbours. Based on this criterion, a novel procedure for automatically selecting the seed point in thyroid nodule images is proposed. The proposed system consists of three components: neutrosophic image enhancement and speckle reduction to reduce speckle noise and automatic seed selection algorithm extracted from the centre of candidate block in ultrasound thyroid images based on the principle that most of its Higher Order Spectra Entropies (HOSE) from Radon Transform (RT) at different angles are within the range between average and maximum entropies, and the region growing image segmentation is applied with the constant threshold. The performance of proposed automatic segmentation method is compared with other methods in terms of calculating, True Positive (TP) value (96.44 ± 3.01%), False Positive (FP) value (3.55 ± 1.45%), Dice Coefficient (DC) value (92.24 ± 6.47%), Similarity Index (SI) (80.57 ± 1.06%), and Hausdroff Distance (HD) (0.42 ± 0.24 pixels). The proposed system can be considered as an added value to the malignancy diagnosis in thyroid nodule by an endocrinologist.
<p class="Abstract">The amount of data processed and stored in the cloud is growing dramatically. The traditional storage devices at both hardware and software levels cannot meet the requirement of the cloud. This fact motivates the need for a platform which can handle this problem. Hadoop is a deployed platform proposed to overcome this big data problem which often uses MapReduce architecture to process vast amounts of data of the cloud system. Hadoop has no strategy to assure the safety and confidentiality of the files saved inside the Hadoop distributed File system(HDFS). In the cloud, the protection of sensitive data is a critical issue in which data encryption schemes plays avital rule. This research proposes a hybrid system between two well-known asymmetric key cryptosystems (RSA, and Paillier) to encrypt the files stored in HDFS. Thus before saving data in HDFS, the proposed cryptosystem is utilized for encrypting the data. Each user of the cloud might upload files in two ways, non-safe or secure. The hybrid system shows higher computational complexity and less latency in comparison to the RSA cryptosystem alone.</p>
Developing a confident Hadoop essentially a cloud computing is an essential challenge as the cloud. The protection policy can be utilized during various cloud services such as Platform as a Service (PaaS), Infrastructure as a Service (IaaS), and Software as a Service (SaaS) and also can support most requirements in cloud computing. This event motivates the need of a policy which will control these challenges. Hadoop may be a used policy recommended to beat this big data problem which usually utilizes MapReduce design to arrange huge amounts of information of the cloud system. Hadoop has no policy to ensure the privacy and protection of the files saved within the Hadoop Distributed File System (HDFS). Within the cloud, the safety of sensitive data may be a significant problem within which encryption schemes play an avital rule. This paper proposes a hybrid method between pair well-known asymmetric key cryptosystems (RSA and Rabin) to cipher the files saved in HDFS. Therefore, before storing data in HDFS, the proposed cryptosystem is employed to cipher the information. In the proposed system, the user of the cloud might upload files in two ways, secure or non-secure. The hybrid method presents more powerful computational complexity and smaller latency as compared to the RSA cryptosystem alone.
Novel Coronavirus disease 2019 (COVID-19) is a type of pandemic viruses that cause respiratory tract infection in humans. The clinical imaging of Chest X-Ray (CXR) by Computer Aided Diagnosis (CAD) plays an important role to identify the patients who infected by COVID-19. The objective of this paper presents a Computer Aided Diagnosis (CAD) method for automatically classify 110 frontal CXR images of contagious people according to Normal and COVID-19 infection. The proposed method contains of four phases: image enhancement, feature extraction, feature selection and classification. Gaussian filter is performed to de-noise the images and Adaptive Histogram Equalization (AHE) for image enhancement in pre-processing step for better decision-making process. Local Binary Pattern (LBP) features set are extracted from the dataset. Binary Particle Swarm Optimization (BPSO) is considered to select the clinically relevant features and developing the robust model. The successive features are fed to Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) classifiers. The experimental results show that the system robustness in classification COVID-19 from Normal images with average accuracy 94.6%, sensitivity 96.2% and specificity 93%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.