The present study compares two twin-fluid atomizer concepts based on the airflow (shock waves) pattern obtained through shadowgraph imaging for atomization of water with a low air/water pressure supply. The research work was conducted using the backlight imaging technique for converging (sonic) and converging–diverging (supersonic) air-assist atomizers with a 3.0 mm (throat) diameter. An annular sheet of thicknesses 70 µm and 280 µm with a high-speed air-core was employed to study the breakup dynamics for different water mass flow rates (100–350 kg/h) and air mass flow rates (5–35 kg/h). Different sheet breakup patterns were identified as the function of the ALR ratio (air-to-liquid mass flow), liquid Weber number (WeL), and Reynolds number (Reg). Different breakup modes extend from canonical Rayleigh bubble breakup, ligament-type breakup, to the pure pulsating breakup via annular sheet disintegration. The sheet breakup dynamics were studied in terms of spray angle and breakup length. With higher ALR values, breakup length showed a decreasing trend, while spray angle showed an increasing trend in the converging and converging–diverging (CD) air-assist atomizers, respectively, owing to the drastic difference in the jet flow dynamics.
This study investigates the gas dynamic effects and atomization behavior of a novel sonic bluff body-assisted two-fluid atomizer with three different geometric configurations based on airflow orifice diameters (d) of 2.0 mm, 3.0 mm, and 4.0 mm. Along with a 280 µm annular liquid sheet, atomizers that employed a central bluff body (cone) with 6.0 mm cone distance (Lc) are compared based on the range of different air and liquid (water) flow rates. The spray-bluff body-impacted secondary atomization was characterized through volume-normalized droplet size distribution (DSD) and cumulative droplet distribution, excentricity plots, Sauter mean diameter (SMD), and relative span factor (Δ). Droplet number density decreases with the increase in radial location, with lesser droplet density for the 3.0 mm atomizer. DSD and cumulative droplet distribution become less uniform with the increase in the radial locations with wider distribution for larger diameter atomizers (4.0 mm). Droplet excentricity follows an inverse relationship with the droplet diameter such that high diameter droplets have low excentricity (%) and vice versa. SMD and relative span factor (RSF) showed opposite trends when plotted (line plots) against the air-to-liquid ratio (ALR) with larger fluctuation in the SMD than the RSF (Δ) value. The spray pattern spread increases gradually with increasing liquid loading and with decreases in the ALR value for all atomizers.
This study examines the gas dynamic effect and atomization behaviour of the sonic bluff body-assisted twin-fluid atomizer with three distinct geometry configurations based on cone distances (Lc) as 6.0 mm, 8.0 mm, and 10.0 mm. The atomization characteristics of these atomizers employing a 280 µm annular liquid sheet with a central bluff body (cone) are compared based on a range of air and liquid flow rates. The spray-bluff body impacted secondary atomization was characterized through volume-normalized droplet size distribution (DSD) & cumulative droplet distribution, excentricity plots, Sauter mean diameter (SMD), and relative span factor (Δ). When plotted for a given liquid flow rate, the DSD & cumulative droplet distribution becomes more uniform with the increase in the airflow rate independent of the cone distance (Lc). Excentricity plots exhibited high excentricity droplets at the spray centreline and a large fraction of nearly spherical droplets at off-centre spray locations. SMD and RSF (Δ) showed opposite trends when plotted against the air-to-liquid ratio (ALR) as SMD increases while RSF decreases with radial locations, respectively. When plotted for all radial locations, Sauter mean diameter (D32) and relative span factor (Δ) show a cluster formation. Larger SMD values correspond to lower RSF (Δ) values and vice-versa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.