A grand challenge from the wind energy industry is to provide reliable forecasts on mountain winds several hours in advance at microscale (∼100 m) resolution. This requires better microscale wind-energy physics included in forecasting tools, for which field observations are imperative. While mesoscale (∼1 km) measurements abound, microscale processes are not monitored in practice nor do plentiful measurements exist at this scale. After a decade of preparation, a group of European and U.S. collaborators conducted a field campaign during 1 May–15 June 2017 in Vale Cobrão in central Portugal to delve into microscale processes in complex terrain. This valley is nestled within a parallel double ridge near the town of Perdigão with dominant wind climatology normal to the ridges, offering a nominally simple yet natural setting for fundamental studies. The dense instrument ensemble deployed covered a ∼4 km × 4 km swath horizontally and ∼10 km vertically, with measurement resolutions of tens of meters and seconds. Meteorological data were collected continuously, capturing multiscale flow interactions from synoptic to microscales, diurnal variability, thermal circulation, turbine wake and acoustics, waves, and turbulence. Particularly noteworthy are the extensiveness of the instrument array, space–time scales covered, use of leading-edge multiple-lidar technology alongside conventional tower and remote sensors, fruitful cross-Atlantic partnership, and adaptive management of the campaign. Preliminary data analysis uncovered interesting new phenomena. All data are being archived for public use.
The Second Wind Forecast Improvement Project (WFIP2) is a U.S. Department of Energy (DOE)- and National Oceanic and Atmospheric Administration (NOAA)-funded program, with private-sector and university partners, which aims to improve the accuracy of numerical weather prediction (NWP) model forecasts of wind speed in complex terrain for wind energy applications. A core component of WFIP2 was an 18-month field campaign that took place in the U.S. Pacific Northwest between October 2015 and March 2017. A large suite of instrumentation was deployed in a series of telescoping arrays, ranging from 500 km across to a densely instrumented 2 km × 2 km area similar in size to a high-resolution NWP model grid cell. Observations from these instruments are being used to improve our understanding of the meteorological phenomena that affect wind energy production in complex terrain and to evaluate and improve model physical parameterization schemes. We present several brief case studies using these observations to describe phenomena that are routinely difficult to forecast, including wintertime cold pools, diurnally driven gap flows, and mountain waves/wakes. Observing system and data product improvements developed during WFIP2 are also described.
Coherent Doppler lidar measurements are of increasing interest for the wind energy industry. Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three‐dimensional scanning Doppler lidar may provide a new basis for wind farm site selection, design and optimization. In this paper, the authors discuss Doppler lidar measurements obtained for a wind energy development. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically terrain effects, spatial variation of winds, power density and the effect of shear at different layers within the rotor swept area. Vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain‐following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. Doppler lidar data are used to estimate the spatial power density at hub height (for the period of the deployment). An example wind farm layout is presented for demonstration purposes based purely on lidar measurement, even though the lidar data acquisition period cannot be considered climatological. The strength of this approach is the ability to directly measure spatial variations of the wind field over the wind farm. Also, because Doppler lidar can measure winds at different vertical levels, an approach for estimating wind power density over the rotor swept area (rather than only the hub height) is explored. Finally, advanced vector retrieval algorithms have been applied to better characterize local wind variations and shear. Copyright © 2012 John Wiley & Sons, Ltd.
Abstract. To improve parameterizations of the turbulence dissipation rate (ϵ) in numerical weather prediction models, the temporal and spatial variability of ϵ must be assessed. In this study, we explore influences on the variability of ϵ at various scales in the Columbia River Gorge during the WFIP2 field experiment between 2015 and 2017. We calculate ϵ from five sonic anemometers all deployed in a ∼4 km2 area as well as from two scanning Doppler lidars and four profiling Doppler lidars, whose locations span a ∼300 km wide region. We retrieve ϵ from the sonic anemometers using the second-order structure function method, from the scanning lidars with the azimuth structure function approach, and from the profiling lidars with a novel technique using the variance of the line-of-sight velocity. The turbulence dissipation rate shows large spatial variability, even at the microscale, especially during nighttime stable conditions. Orographic features have a strong impact on the variability of ϵ, with the correlation between ϵ at different stations being highly influenced by terrain. ϵ shows larger values in sites located downwind of complex orographic structures or in wind farm wakes. A clear diurnal cycle in ϵ is found, with daytime convective conditions determining values over an order of magnitude higher than nighttime stable conditions. ϵ also shows a distinct seasonal cycle, with differences greater than an order of magnitude between average ϵ values in summer and winter.
Annually and seasonally averaged wind profiles from three Doppler lidars were obtained from sites in the Columbia River basin of east-central Oregon and Washington, a major region of wind-energy production, for the Second Wind Forecast Improvement Project (WFIP2) experiment. The profile data are used to quantify the spatial variability of wind flows in this area of complex terrain, to assess the HRRR–NCEP model’s ability to capture spatial and temporal variability of wind profiles, and to evaluate model errors. Annually averaged measured wind speed differences over the 70-km extent of the lidar measurements reached 1 m s−1 within the wind-turbine rotor layer, and 2 m s−1 for 200–500 m AGL. Stronger wind speeds in the lowest 500 m occurred at sites higher in elevation, farther from the river, and farther west—closer to the Cascade Mountain barrier. Validating against the lidar data, the HRRR model underestimated strong wind speeds (>12 m s−1) and, consequently, their frequency of occurrence, especially at the two lowest-elevation sites, producing annual low biases in rotor-layer wind speed of 0.5 m s−1. The RMSE between measured and modeled winds at all sites was about 3 m s−1 and did not degrade significantly with forecast lead time. The nature of the model errors was different for different seasons. Moreover, although the three sites were located in the same basin terrain, the nature of the model errors was different at each site. Thus, if only one of the sites had been instrumented, different conclusions would have been drawn as to the major sources of model error, depending on where the measurements were made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.