We propose a noninvasive method to estimate the time constant. The calculation of this factor permits us to understand the pressure variations of the inner ear and also predict the behavior of the flow resistance of the cochlear aqueduct. A set of mathematical relationships incorporating the intralabyrinthine pressure, the intracranial pressure, and the time constant was applied. The modeling process describes the hydrodynamic effects of the cerebrospinal fluid in the intralabyrinthine fluid space, where the input and output of the created model are, respectively, the sinusoidal variation of the respiration signal and the distortion product of otoacoustic emissions. The obtained results were compared with those obtained by different invasive techniques. A long time constant was detected each time when the intracranial pressure increased; this phenomenon is related to the role of the cochlear aqueduct described elsewhere. The interpretation of this model has revealed the ability of these predictions to provide a greater precision for hydrodynamic variation of the inner ear, consequently the variation of the dynamic process of the cerebrospinal fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.