We report a new family of homoleptic iridium(III) complexes that emit blue phosphorescence at room temperature. The iridium(III) complexes are comprised of phenyltriazole ligands and were easily prepared via short synthetic routes. The parent fac-tris(1-methyl-5-phenyl-3-propyl-[1,2,4]triazolyl)iridium(III) complex exhibits blue photoluminescence (PL) with emission peaks at 449 and 479 nm and has a solution PL quantum yield of 66%. The emission was sequentially blue-shifted by the attachment of one and two fluorine atoms to the ligand phenyl ring with the fac-tris{1-methyl-5-(4,6-difluorophenyl)-3-propyl-[1,2,4]triazolyl}iridium(III) complex having the 1931 Commission Internationale de l'Eclairage coordinates of (0.16, 0.12) at room temperature. In contrast, when the phenyl ring of the ligands was substituted by trifluoromethyl, the PL spectrum was red-shifted when compared to the parent compound whereas if the trifluoromethyl group was attached to the triazole ring, the emission was blue-shifted. The radiative rates of these new blue iridium(III) complexes were found to be in the range of 2−6 × 105 s-1, indicating that the emission had varying amounts of metal-to-ligand charge-transfer character. Molecular orbital calculations showed that for the fluorinated complexes the contribution of the ligand triplet character to the emissive energy state increased with the hypsochromic shift in emission. This was confirmed by time-resolved PL measurements, which showed that the complex with the deepest blue emission had the slowest radiative decay rate.
Solution‐processible saturated blue phosphorescence is an important goal for organic light‐emitting diodes (OLEDs). Fac‐tris(5‐aryltriazolyl)iridium(III) complexes can emit blue phosphorescence at room temperature. Mono‐ and doubly dendronized fac‐tris(1‐methyl‐5‐phenyl‐3‐n‐propyl‐1H‐[1,2,4]triazolyl)iridium(III) 1 and fac‐tris{1‐methyl‐5‐(4‐fluorophenyl)‐3‐n‐propyl‐1H‐[1,2,4]triazolyl}iridium(III) 4 with first generation biphenyl‐based dendrons were prepared. The dendrimers emitted blue light at room temperature and could be solution processed to form thin films. The doubly dendronized 3 had a film photoluminescence quantum yield of 67% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.33). OLEDs comprised of a neat film of dendrimer 3 and an electron transport layer achieved a brightness of 142 cd m−2 at 3.8 V with an external quantum efficiency of 7.9%, and CIE coordinates of (0.18, 0.35). Attachment of the fluorine atom to the emissive core had the effect of moving the luminescence to shorter wavelengths but also quenched the luminescence of the mono‐ and doubly dendronized dendrimers.
Intermolecular interactions play a crucial role in the performance of organic light‐emitting diodes (OLEDs). Here we report the photophysical and electroluminescence properties of a fac‐tris(2‐phenylpyridyl)iridium(III) cored dendrimer in which highly branched biphenyl dendrons are used to control the intermolecular interactions. The presence of fluorene surface groups improves the solubility and enhances the efficiency of photoluminescence, especially in the solid state. The emission peak of the dendrimer is around 530 nm with a PL quantum yield of 76 % in solution and 25 % in a film. The photophysical properties of this dendrimer are compared with a similar dendrimer with the same structure but without the fluorene surface groups. Dendrimer LEDs (DLEDs) are prepared using each dendrimer as a phosphorescent emitter blended in a 4,4′‐bis(N‐carbazolyl)biphenyl host. Device performance is improved significantly by the incorporation of an electron‐transporting layer of 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene. A peak external quantum efficiency of 10 % (38 Cd A–1) for the dendrimer without surface groups and 13 % (49.8 Cd A–1) for the dendrimer with fluorene surface groups is achieved in the bilayer LEDs.
Photoluminescence properties were measured for vacuum-deposited thin films of magnesium, chloroaluminum, bromoaluminum, and metal-free phthalocyanines (MgPc, AlClPc, AlBrPc, and H 2 Pc). For MgPc, AlClPc, and AlBrPc, besides the as-deposited films, phase-transformed films having red-shifted absorption bands at approximately 800 nm were also prepared by a vapor treatment of acetone, dichloromethane, and ethanol. Fluorescence quantum yields of the films at room temperature were 10 -5 -10 -4 . These values were much smaller than those of the corresponding monomers (>0.5), indicating that nonradiative relaxation is dominant in the solid films. Increase of the fluorescence intensity with decreasing temperatures was observed in all the samples, but the extent of the increase was at most as large as 10 times, even at the liquid helium temperature, indicating that nonradiative relaxation is still dominant. The spectral features were very different depending on the crystal phases and the materials. All the red-shifted films showed distinct emission bands located at 850-950 nm overlapped with the absorption edge. This feature was interpreted by the emission from the allowed lowest-lying exciton states. The as-deposited AlBrPc and H 2 Pc films showed broad emission bands at approximately 1000 and 900 nm, respectively, located away from the absorption edge. This feature was interpreted by the very weakly allowed transition from the forbidden lowest-lying exciton state to the vibronic sublevel of the ground state. In the as-deposited AlClPc film new emission bands appeared with decreasing temperature. From the corresponding change in the absorption spectrum, the appearance of the new bands was ascribed to the change of crystal packing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.