Drowsy driving is one of the major causes of road accidents and death. Hence, detection of driver's fatigue and its indication is an active research area. Most of the conventional methods are either vehicle based, or behavioral based or physiological based. Few methods are intrusive and distract the driver, some require expensive sensors and data handling. Therefore, in this study, a low cost, real time driver's drowsiness detection system is developed with acceptable accuracy. In the developed system, a webcam records the video and driver's face is detected in each frame employing image processing techniques. Facial landmarks on the detected face are pointed and subsequently the eye aspect ratio, mouth opening ratio and nose length ratio are computed and depending on their values, drowsiness is detected based on developed adaptive thresholding. Machine learning algorithms have been implemented as well in an offline manner. A sensitivity of 95.58% and specificity of 100% has been achieved in Support Vector Machine based classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.