The wear properties of Mg alloy AZ31 (Al 3%, Zn 1%, rest Mg) nanocomposites reinforced with multi-wall carbon nanotubes (MWCNTs) were studied by conducting experiments on pin-on-disc wear test apparatus. The composites were fabricated by powder metallurgy technique by homogeneously reinforcing variable percentages of MWCNTs (0.33 wt%, 0.66 wt%, and 1.0 wt%) into Mg alloy AZ31 matrix through mechanical alloying. The effect of varying percentages of MWCNTs on the wear properties of AZ31-MWCNT nanocomposites and the mechanism behind that were investigated through scanning electron microscope and energy dispersive spectroscope analysis. The microstructure investigation revealed that an increase in reinforcement of MWCNTs in AZ31 alloy increased the hardness and reduced the wear rate of the composites with 0.33 wt% and 0.66 wt% due to homogeneous distribution and high interfacial strength between AZ31 and MWCNTs. However, with the addition of 1.0 wt% MWCNTs to AZ31 alloy led to high agglomeration of MWCNTs, resulting in poor interfacial strength and weak bonding between AZ31 and conglomerated MWCNTs, subsequently increasing the wear rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.