Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression.
Previous studies of transformed rodent fibroblasts have suggested that specific isoforms of the actin-binding protein tropomyosin (TM) could function as suppressors of transformation, but an analysis of TM expression in patient tumor tissue is limited. The purpose of our study was to characterize expression of the different TM isoforms in human transitional cell carcinoma of the urinary bladder by immunohistochemistry and Western blot analysis. We found that TM1 and TM2 protein levels were markedly reduced and showed >60% reduction in 61% and 55% of tumor samples, respectively. TM5, which was expressed at very low levels in normal bladder mucosa, exhibited aberrant expression in 91% of tumor specimens. The Western blot findings were confirmed by immunohistochemical analysis in a number of tumors. We then investigated the mechanism underlying TM expression deregulation, in the T24 human bladder cancer cell line. We showed that levels of TM1, TM2 and TM3 are reduced in T24 cells, but significantly upregulated by inhibition of the mitogen-activated protein kinase-signaling pathway. In addition, inhibition of this pathway was accompanied by restoration of stress fibers. Overall, changes in TM expression levels seem to be an early event during bladder carcinogenesis. We conclude that alterations in TM isoform expression may provide further insight into malignant transformation in transitional cell carcinomas of the bladder and may be a useful target for early detection strategies. © 2004 Wiley-Liss, Inc. Key words: tropomyosin; cytoskeleton; bladder neoplasmsTransitional cell carcinoma (TCC) is the most common cancer type of the urinary bladder, representing approximately 90% of all cases. More than 57,000 people are diagnosed with TCC of the urinary bladder each year in the United States alone, and 12,500 of these patients are expected to die from the cancer. 1 Cytoscopy is the most valuable method to detect and monitor TCC, but it remains difficult to predict tumor progression, optimal therapy and finally clinical outcome. 2,3 There is a clear need for developing biomarkers for bladder cancer management.Alterations of the actin-based cytoskeleton are an established part of the neoplastic phenotype, and it is now demonstrated that such alteration is not a byproduct of cellular transformation but contributes to malignant transformation. 4,5 These alterations in actin remodeling are associated with downregulation of numerous actin-binding proteins and cell adhesion molecules, which are therefore candidate markers for early cancer detection and prognostic indication. 6 Tropomyosins (TMs) are a family of actin-binding proteins essential for the integrity of actin filaments. 7 Although TMs have been known to function in regulation of muscle contraction, the functional significance of the multiple TM isoforms present in non-muscle cells has remained largely unclear. Several studies have suggested that specific isoforms of TMs may possess tumor suppressor activity. Consistent with this hypothesis it was shown that (i) expr...
Recently, we isolated a ubiquitously expressed gene designated TERE1, which has a significant effect on the growth regulation in bladder cancer. The TERE1 gene maps to chromosome 1p36.11-1p36.33 between the micro-satellite markers D1S2667 and D1S434, a chromosome locus that has been identified by loss of heterozygosity studies as a site of a putative tumor suppressor gene or genes for multiple tumor types including prostate carcinoma. The expression of the TERE1 transcript and protein was examined in a series of thirty microdissected prostate tumors by semi-quantitative RT/PCR and immunohistochemistry. There was a significant 61% decrease in the TERE1 transcript in prostate carcinoma (CaP) and a distinct loss of the TERE1 protein in metstatic prostate. Though a loss of heterozygosity at chromosome 1p36 was found in 25% of these prostate tumors, there appeared to be no TERE1 mutations present in these tumor samples. Induced TERE1 expression after transduction or transfection of TERE1 constructs into two prostate carcinoma (LNCaP and PC-3) cell lines significantly decreased proliferation up to 80% with a significant increase in the number of cells in G1. Serum factors but not DHT (dihydrotestosterone) appear to regulate the amount of TERE1 protein in the androgen responsive LNCaP cell line. Additionally, we have identified by microarray analysis various growth regulatory genes that are down-regulated or up-regulated in TERE1-transduced PC-3 cells. Altogether, these data suggest that TERE1 maybe significant in prostate cancer growth regulation and the down regulation or absence of TERE1 may be an important component of the phenotype of advanced disease.
Gene rearrangements involving the Ewing sarcoma breakpoint region 1 (EWSR1) gene are seen in a broad range of sarcomas and some nonmesenchymal neoplasms. Ewing sarcoma is molecularly defined by a fusion of the EWSR1 gene (or rarely the related FUS gene) to a member of the E26 transformation-specific (ETS) family of transcription factors, frequently the EWSR1-FLI1 fusion. More recently, EWSR1 gene fusion to non-ETS family members, including the nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2 (NFATC2) gene, has been reported in a histological variant of Ewing sarcoma. Here, we report a malignant round cell tumor of bone with an EWSR1-NFATC2 fusion gene. This report builds upon the unusual morphological and clinical presentation of bone neoplasms containing an EWSR1-NFATC2 fusion gene.
Current studies of the TERE1 (UBIAD1) protein emphasize its multifactorial influence on the cell, in part due to its broad sub-cellular distribution to mitochondria, endoplasmic reticulum and golgi. However, the profound effects of TERE1 relate to its prenyltransferase activity for synthesis of the bioactive quinones menaquinone and COQ10. Menaquinone (aka, vitamin K-2) serves multiple roles: as a carrier in mitochondrial electron transport, as a ligand for SXR nuclear hormone receptor activation, as a redox modulator, and as an alkylator of cellular targets. We initially described the TERE1 (UBIAD1) protein as a tumor suppressor based upon reduced expression in urological cancer specimens and the inhibition of growth of tumor cell lines/xenografts upon ectopic expression. To extend this potential tumor suppressor role for the TERE1 protein to renal cell carcinoma (RCC), we applied TERE1 immunohistochemistry to a TMA panel of 28 RCC lesions and determined that in 57% of RCC lesions, TERE1 expression was reduced (36%) or absent (21%). Ectopic TERE1 expression caused an 80% decrease in growth of Caki-1 and Caki-2 cell lines, a significantly decreased colony formation, and increased caspase 3/7 activity in a panel of RCC cell lines. Furthermore, TERE1 expression increased mitochondrial oxygen consumption and hydrogen production, oxidative stress and NO production. Based on the elevated cholesterol and altered metabolic phenotype of RCC, we also examined the effects of TERE1 and the interacting protein TBL2 on cellular cholesterol. Ectopic TERE1 or TBL2 expression in Caki-1, Caki-2 and HEK 293 cells reduced cholesterol by up to 40%. RT-PCR analysis determined that TERE1 activated several SXR targets known to regulate lipid metabolism, consistent with predictions based on its role in menaquinone synthesis. Loss of TERE1 may contribute to the altered lipid metabolic phenotype associated with progression in RCC via an uncoupling of ROS/RNS and SXR signaling from apoptosis by elevation of cholesterol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.