Chemical vapor deposited (CVD) amorphous tantalum-oxy nitride film on porous three-dimensional (3D) nickel foam (TaNx(Oy)/NF) utilizing tantalum precursor, tris(diethylamino)(ethylimino)tantalum(V), ([Ta(NEt)(NEt2)3]) with preformed Ta-N bonds is reported as a potential self-supported...
Porous ceria for high temperature catalytic applications demands structural integrity concomitant with sinter resistance and improved gas permeability. The current state of the art hinges on complex synthesis methodologies which are not only expensive but also lack flexibility in pore tailorability. Hence, the development of porous scaffolds through low-cost processes without compromising on the functionality is in order. Herein, we demonstrate porous ceria with an open porosity of 88% developed through camphene assisted freeze casting for the first time. Microstructural evolution with different building blocksmicrometre-sized particles and short fibres were also studied. Preliminary catalytic activity obtained via temperature programmed reduction exemplified similar profiles showing no effect of the initial building blocks on the activity.
Tantalum oxynitride (TaOxN1−x) fibers were synthesized and evaluated for their electrocatalytic hydrogen activity using an in‐house developed centrifugal spinning setup. By tailoring the composition of the spinning solution and optimizing collector distance and rotation speed of the spinneret, bead‐free TaOxN1−x fibers with a diameter of 800 nm were obtained. The fibers were structurally characterized through phase and elemental analysis, confirming the formation of monoclinic TaOxN1−x with clear splitting of the X‐ray photoelectron spectroscopy peaks indicating Ta was in +5 oxidation state. The resulting oxynitride fibers exhibited superior electrocatalytic performance with low overpotentials (250 mV) to generate 10 mA/cm2 compared to Ta2O5 oxide fibers. Interestingly, the enhanced activity of oxynitride fibers was observed to be suppressed in basic medium due to the high oxophilicity of tantalum ions and a negative Gibbs adsorption‐free energy, leading to poisoning of the active sites. This work demonstrates a facile pathway for the fabrication of high‐performance electrocatalysts, based on TaOxN1−x fibers, from a cost‐effective and energy‐efficient centrifugal spinning technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.