We evaluate machine learning methods for event classification in the Active-Target Time Projection Chamber detector at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. Currently, events of interest are selected via cuts in the track fitting stage of the analysis workflow. An explicit classification step to single out the desired reaction product would result in more accurate physics results as well as a faster analysis process. We tested binary and multi-class classification methods on data produced by the 46 Ar(p,p) experiment run at the NSCL in September 2015. We found that fine-tuning a pre-trained convolutional neural network produced the most successful classifier of proton scattering events in the experimental data, when trained on both experimental and simulated data. We present results from this investigation and conclude with recommendations for event classification in future experiments.
Upper Confidence bounds applied to Trees (UCT), a bandit-based Monte-Carlo sampling algorithm for planning, has recently been the subject of great interest in adversarial reasoning. UCT has been shown to outperform traditional minimax based approaches in several challenging domains such as Go and Kriegspiel, although minimax search still prevails in other domains such as Chess. This work provides insights into the properties of adversarial search spaces that play a key role in the success or failure of UCT and similar sampling-based approaches. We show that certain "early loss" or "shallow trap" configurations, while unlikely in Go, occur surprisingly often in games like Chess (even in grandmaster games). We provide evidence that UCT, unlike minimax search, is unable to identify such traps in Chess and spends a great deal of time exploring much deeper game play than needed.
Reliable modeling of conditional densities is important for quantitative scientific fields such as particle physics. In domains outside physics, implicit quantile neural networks (IQN) have been shown to provide accurate models of conditional densities. We present a successful application of IQNs to jet simulation and correction using the tools and simulated data from the Compact Muon Solenoid (CMS) Open Data portal. 1 https://opendata.cern.ch/ Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.