Gender has an important influence on blood pressure, with premenopausal women having a lower arterial blood pressure than age-matched men. Compared with premenopausal women, postmenopausal women have higher blood pressures, suggesting that ovarian hormones may modulate blood pressure. However, whether sex hormones are responsible for the observed gender-associated differences in arterial blood pressure and whether ovarian hormones account for differences in blood pressure in premenopausal versus postmenopausal women remains unclear. In this review, we provide a discussion of the potential blood pressure regulating effects of female and male sex hormones, as well as the cellular, biochemical and molecular mechanisms by which sex hormones may modify the effects of hypertension on the cardiovascular system.
A number of cellular and biochemical processes are involved in the pathophysiology of glomerular and vascular remodeling, leading to renal and vascular disorders, respectively. Although estradiol protects the renal and cardiovascular systems, the mechanisms involved remain unclear. In this review we provide a discussion of the cellular, biochemical, and molecular mechanisms by which estradiol may exert protective effects on the kidneys and vascular wall. In this regard, we consider the possible role of genomic vs. nongenomic mechanisms and estrogen receptor-dependent vs. estrogen receptor-independent mechanisms in mediating the protective effects of estradiol on the renal and cardiovascular systems.
Premenopausal women have a lower risk for cardiovascular events, and mortality due to coronary vascular disease (CVD) in premenopausal women is rare. These facts suggest that endogenous estrogens, such as estradiol, protect the cardiovascular system, and several observational studies and a few small clinical studies conducted in healthy and younger postmenopausal women support this hypothesis. In contrast, two large randomized clinical trials (RCTs), using conjugated equine estrogens and conducted in older women with established CVD or without overt CVD, failed to demonstrate protection against CVD by exogenous estrogens. These divergent findings have resulted in confusion with regard to the association between estrogen deficiency and CVD in postmenopausal women. In order to reconcile these contradictory findings, it is necessary to examine the pathophysiology associated with age-dependent changes within the vessel wall and to compare the pharmacology of different types of estrogens. Understanding age-dependent changes in vascular pathology and the pharmacology of different estrogens may facilitate the development of therapeutic strategies for hormone replacement therapy (HRT) that would be effective in delaying vascular remodeling leading to CVD following menopause. In this review we provide an overview of the impact of menopause and estrogen deficiency on vascular remodeling and emphasize the importance of timing and type of estrogen to achieve maximum benefits with regard to reducing the risk of CVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.