Society needs to capture gigatons of carbon dioxide from the atmosphere annually and then store it long-term to limit and ultimately reverse the effects of climate change. Bringing lost carbon back into agricultural soils should be a priority as it brings the added benefit of improving soil properties. Linking soil organic carbon (SOC) fractions of different stability with soil microbial composition can help understand and subsequently manage SOC storage. Here we develop a pipeline for evaluating the effects of microbial management on SOC content using rapid and low-cost SOC fractionation and metagenomics approaches. We tested the methods in a wheat pot trial inoculated with 17 individual endophytic fungal isolates. Two fungi increased total SOC in the area under the plant stem by ~15%. The fractionation assay showed that the medium stability soil aggregate carbon fraction (AggC) was increased by one of these fungi (+21%) and the chemically recalcitrant proportion (bleach oxidation) of AggC by the other (+35%). Both fungi increased mineral-associated organic carbon (MAOC), the long-term SOC storage, by ~10%. We used rapid, portable, low-cost, whole metagenome long read sequencing to detect a shift in the microbial composition for one of the fungi-inoculated treatments. This treatment showed a more diverse microbial community and a higher quantity of DNA in soil. The results emphasise the link between composition and abundance of soil microorganisms with soil carbon formation. Our dual carbon fractional and metagenomic analysis pipeline can be used to further test the effects of microbial management and ultimately to model the soil factors that influence SOC storage, such as nutrient and water availability, starting SOC content, soil texture and aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.