Purpose The purpose of this paper is to develop, describe and validate a machine learning model for prioritising which financial transactions should be manually investigated for potential money laundering. The model is applied to a large data set from Norway’s largest bank, DNB. Design/methodology/approach A supervised machine learning model is trained by using three types of historic data: “normal” legal transactions; those flagged as suspicious by the bank’s internal alert system; and potential money laundering cases reported to the authorities. The model is trained to predict the probability that a new transaction should be reported, using information such as background information about the sender/receiver, their earlier behaviour and their transaction history. Findings The paper demonstrates that the common approach of not using non-reported alerts (i.e. transactions that are investigated but not reported) in the training of the model can lead to sub-optimal results. The same applies to the use of normal (un-investigated) transactions. Our developed method outperforms the bank’s current approach in terms of a fair measure of performance. Originality/value This research study is one of very few published anti-money laundering (AML) models for suspicious transactions that have been applied to a realistically sized data set. The paper also presents a new performance measure specifically tailored to compare the proposed method to the bank’s existing AML system.
We present a statistical framework for model calibration and uncertainty estimation for complex deterministic models. A Bayesian approach is used to combine data from observations, the deterministic model, and prior parameter distributions to obtain forecast distributions. A case study is presented in which the statistical framework is applied using the hydrogeochemical model (MAGIC) for an assessment of recovery from acidification of soils and surface waters at a long-term study site in Norway under different future acid deposition conditions. The water quality parameters are coupled with a simple dose-response model for trout population health. Uncertainties in model output parameters are estimated and forecast results are presented as probability distributions for future water chemistry and as probability distributions of future healthy trout populations. The forecast results are examined for three different scenarios of future acid deposition corresponding to three different emissions control strategies for Europe. Despite the explicit consideration of uncertainties propagated into the future forecasts, there are clear differences among the scenarios. The case study illustrates how inclusion of uncertainties in model predictions can strengthen the inferences drawn from model results in support of decision making and assessments.
Salmon farming has become a prosperous international industry over the last decades. Along with growth in the production farmed salmon, however, an increasing threat by pathogens has emerged. Of special concern is the propagation and spread of the salmon louse, Lepeophtheirus salmonis. In order to gain insight into this parasites population dynamics in large scale salmon farming system, we present a fully mechanistic stage-structured population model for the salmon louse, also allowing for complexities involved in the hierarchical structure of full scale salmon farming. The model estimates parameters controlling a wide range of processes, including temperature dependent demographic rates, fish size and abundance effects on louse transmission rates, effects sizes of various salmon louse control measures, and distance based between farm transmission rates. Model parameters were estimated from data including 32 salmon farms, except the last production months for five farms which were used to evaluate model predictions. We used a Bayesian estimation approach, combining the prior distributions and the data likelihood into a joint posterior distribution for all model parameters. The model generated expected values that fitted the observed infection levels of the chalimus, adult female and other mobile stages of salmon lice, reasonably well. Predictions for the time periods not used for fitting the model were also consistent with the observational data. We argue that the present model for the population dynamics of the salmon louse in aquaculture farm systems may contribute to resolve the complexity of processes that drive that drive this hostparasite relationship, and hence may improve strategies to control the parasite in this production system.
Abstract-Ground cover classification based on a single satellite image can be challenging. The work reported here concerns the use of multitemporal satellite image data in order to alleviate this problem. We consider the problem of vegetation mapping and model the phenological evolution of the vegetation using a Hidden Markov Model (HMM). The different vegetation classes can be in one of a predefined set of states related to their phenological development. The characteristics of a given class are specified by the state transition probabilities as well as the probability of given satellite observations for that class and state. Classification of a specific pixel is thus reduced to selecting the class that has the highest probability of producing a given series of observations for that pixel. Compared to standard classification techniques such as maximum likelihood (ML) classification, the proposed scheme is flexible in that it derives its properties not only from image specific training data, but also from a model of the temporal behavior of the ground cover. It is shown to produce results that compare favorably to those obtained using ML classification on single satellite images, it also generalizes better than this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.