The long-term impact of high-energy consumption in the manufacturing sector results in adverse environmental effects. Energy consumption and carbon emission prediction in the production environment is an essential requirement to mitigate climate change. The aim of this paper is to evaluate, model, construct, and validate the electricity generated data errors of an automotive component manufacturing company in South Africa for prediction of future transport manufacturing energy consumption and carbon emissions. The energy consumption and carbon emission data of an automotive component manufacturing company were explored for decision making, using data from 2016 to 2018 for prediction of future transport manufacturing energy consumption. The result is an ARIMA model with regression-correlated error fittings in the generalized least squares estimation of future forecast values for five years. The result is validated with RSS, showing an improvement of 89.61% in AR and 99.1% in MA when combined and an RMSE value of 449.8932 at a confidence level of 95%. This paper proposes a model for efficient prediction of energy consumption and carbon emissions for better decision making and utilize appropriate precautions to improve eco-friendly operation.
Increasing climate change concerns call for the manufacturing sector to decarbonize its process by introducing a mitigation strategy. Energy efficiency concepts within the manufacturing process value chain are proportional to the emission reductions, prompting decision makers to require predictive tools to execute decarbonization solutions. Accurate forecasting requires techniques with a strong capability for predicting automotive component manufacturing energy consumption and carbon emission data. In this paper we introduce a hybrid autoregressive moving average (ARIMA)-long short-term memory network (LSTM) model for energy consumption forecasting and prediction of carbon emission within the manufacturing facility using the 4IR concept. The method could capture linear features (ARIMA) and LSTM captures the long dependencies in the data from the nonlinear time series data patterns, Root means square error (RMSE) is used for data analysis comparing the performance of ARIMA which is 448.89 as a single model with ARIMA-LSTM hybrid model as actual (trained) and predicted (test) 59.52 and 58.41 respectively. The results depicted RMSE values of ARIMA-LSTM being extremely smaller than ARIMA, which proves that hybrid ARIMA-LSTM is more suitable for prediction than ARIMA.
Climate change is progressing faster than previously envisioned. Efforts to mitigate the challenges of greenhouse gas emissions by countries through the establishment of the Intergovernmental Panel on Climate Change has resulted in continuous environmental improvements in the energy efficiency and carbon emission signatures of products. In this paper, an energy–carbon emissions nexus causal model was applied using the Leontief Input–Output mathematical model for low-carbon products in future transport-manufacturing industries., The relationship between energy savings, energy efficiency, and the carbon intensity of products for the carbon emissions signature of the future transport manufacturing in South Africa was established. The interrelationship between the variables resulted in a 29% improvement in the total energy intensity of the vehicle body part products, 7.22% in the cumulative energy savings, and 16.25% in the energy efficiency. The scope that has been examined in this paper will be interesting to agencies of government, researchers, policymakers, business owners, and practicing engineers in future transport manufacturing and could serve as a fundamental guideline for future studies in these areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.