In this research work, nano-phase change material (NPCM) composites were prepared by adding 1 %, 2 %, and 3 % mass fractions of highly conductive carbon-based graphene nanoparticles into the base phase change material (PCM). The existence and uniform graphene dispersion in the PCM was confirmed through Raman spectrometer and scanning electron microscope (SEM) analysis. The Fourier transform infrared (FTIR) and x-Ray diffraction (XRD) results showed that all three NPCM composites were chemically stable, and their crystallinity was similar to the base PCM. For the sample with 3 % graphene, the solid-state thermal conductivity was increased by 219.89 %, and liquid-state thermal conductivity was increased by 161.65 %, with a 3.52 % drop in latent heat capacity was revealed from differential scanning calorimetry (DSC) analysis. All NPCM composites have onset and peak melting temperatures closer to the base PCM. Hence, the NPCM composites can be employed for thermal energy storage (TES) integrated solar water heater (SWH) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.