Scientists have long sought to characterize the pathophysiologic basis of schizophrenia and develop biomarkers that could identify the illness. Extensive postmortem and in vivo neuroimaging research has described the early involvement of the hippocampus in the pathophysiology of schizophrenia. In this context, we have developed a hypothesis that describes the evolution of schizophrenia-from the premorbid through the prodromal stages to syndromal psychosis-and posits dysregulation of glutamate neurotransmission beginning in the CA1 region of the hippocampus as inducing attenuated psychotic symptoms and initiating the transition to syndromal psychosis. As the illness progresses, this pathological process expands to other regions of the hippocampal circuit and projection fields in other anatomic areas including the frontal cortex, and induces an atrophic process in which hippocampal neuropil is reduced and interneurons are lost. This paper will describe the studies of our group and other investigators supporting this pathophysiological hypothesis, as well as its implications for early detection and therapeutic intervention.
Neuromelanin-sensitive MRI (NM-MRI) purports to detect the content of neuromelanin (NM), a product of dopamine metabolism that accumulates with age in dopamine neurons of the substantia nigra (SN). Interindividual variability in dopamine function may result in varying levels of NM accumulation in the SN; however, the ability of NM-MRI to measure dopamine function in nonneurodegenerative conditions has not been established. Here, we validated that NM-MRI signal intensity in postmortem midbrain specimens correlated with regional NM concentration even in the absence of neurodegeneration, a prerequisite for its use as a proxy for dopamine function. We then validated a voxelwise NM-MRI approach with sufficient anatomical sensitivity to resolve SN subregions. Using this approach and a multimodal dataset of molecular PET and fMRI data, we further showed the NM-MRI signal was related to both dopamine release in the dorsal striatum and resting blood flow within the SN. These results suggest that NM-MRI signal in the SN is a proxy for function of dopamine neurons in the nigrostriatal pathway. As a proof of concept for its clinical utility, we show that the NM-MRI signal correlated to severity of psychosis in schizophrenia and individuals at risk for schizophrenia, consistent with the well-established dysfunction of the nigrostriatal pathway in psychosis. Our results indicate that noninvasive NM-MRI is a promising tool that could have diverse research and clinical applications to investigate in vivo the role of dopamine in neuropsychiatric illness.
To our knowledge, this study presents the first GABA concentration measurements in unmedicated patients with schizophrenia, who showed elevations in both GABA and Glx levels in the medial prefrontal cortex but not the dorsolateral prefrontal cortex. Medicated patients did not show these elevations, suggesting possible normalization of levels with antipsychotic medication. The Glx elevations agree with prior magnetic resonance spectroscopy literature, but GABA elevations were unexpected and suggest possible involvement of classes of interneurons not found to show impairments in postmortem studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.