Background Plasmodial species naturally infecting orang-utans, Plasmodium pitheci and Plasmodium silvaticum, have been rarely described and reportedly cause relatively benign infections. Orang-utans at Rescue Rehabilitation Centres (RRC) across the orang-utan natural range suffer from malaria illness. However, the species involved and clinical pathology of this illness have not been described in a systematic manner. The objective of the present study was to identify the Plasmodium species infecting orang-utans under our care, define the frequency and character of malaria illness among the infected, and establish criteria for successful diagnosis and treatment. Methods During the period 2017–2021, prospective active surveillance of malaria among 131 orang-utans resident in a forested RRC in West Kalimantan (Indonesia) was conducted. A total of 1783 blood samples were analysed by microscopy and 219 by nucleic acid based (PCR) diagnostic testing. Medical records of inpatient orang-utans at the centre from 2010 to 2016 were also retrospectively analysed for instances of symptomatic malaria. Results Active surveillance revealed 89 of 131 orang-utans were positive for malaria at least once between 2017 and 2021 (period prevalence = 68%). During that period, 14 cases (affecting 13 orang-utans) developed clinical malaria (0.027 attacks/orang-utan-year). Three other cases were found to have occurred from 2010–2016. Sick individuals presented predominantly with fever, anaemia, thrombocytopenia, and leukopenia. All had parasitaemias in excess of 4000/μL and as high as 105,000/μL, with severity of illness correlating with parasitaemia. Illness and parasitaemia quickly resolved following administration of artemisinin-combined therapies. High levels of parasitaemia also sometimes occurred in asymptomatic cases, in which case, parasitaemia cleared spontaneously. Conclusions This study demonstrated that P. pitheci very often infected orang-utans at this RRC. In about 14% of infected orang-utans, malaria illness occurred and ranged from moderate to severe in nature. The successful clinical management of acute pitheci malaria is described. Concerns are raised about this infection potentially posing a threat to this endangered species in the wild.
The Eurasian or European beaver ( Castor fiber ) is the second-largest living rodent after the capybara. It is a semi-aquatic animal known for building dams and lodges. They strictly feed on lignocellulose-rich plants and correspondingly harbor cellulolytic microbial communities in their digestive tract. In this study, the bacterial community composition, diversity, and functional profile of different gut compartments ranging from stomach to colon have been explored. A total of 277 bacterial operational taxonomic units (OTUs) at species level were obtained from the gut systems of two males (juvenile and subadult) and one subadult female beaver. In general, cecum and colon are dominated by Firmicutes and Actinobacteria. High abundance of Bacteroidetes was observed only in male juvenile beaver cecum and colon, suggesting that the bacterial composition changes with age. Within the cecum and colon, members of known cellulase-producing bacterial taxa including the families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae 1 were detected. The presence of putative genes encoding cellulolytic and carbohydrate-degrading enzymes indicated also the degradation of recalcitrant plant material in both gut compartments. The bacterial community in the gut systems of the Eurasian beaver differed from that of the North American beaver. Higher abundance of Actinobacteria and lower abundances of Bacteroidetes were recorded in the Eurasian beaver. Similar differences were obtained to bacterial communities of termites and herbivorous animals such as bovine. The data presented in this study provides the first insight into bacterial communities in the gut system of the Eurasian beaver.
Objectives Bioactive compounds of Piper crocatum Ruiz & Pav, which have acted as antioxidants can be used to prevent and treat degenerative diseases such as hyperglycemia, cancer, gout and hypertension. This research aimed to determine the highest antioxidant activity from extract and fractions of P. crocatum leaves and to identify the active compounds such as antioxidants. Methods The extraction was performed by maceration with 70% ethanol and then the crude extract was fractionated with three solvents, namely n-hexane, ethyl acetate and water. The identification of antioxidant activity was carried out using Rancimat and CUPRAC. The active compounds was identified using LC-MS (Liquid Chromatography-Mass Spectrometry). Results The highest of the Rancimat method was obtained from the ethyl acetate fraction with a protective factor value of 1.38. Ten compounds were identified in the ethyl acetate fraction of P. crocatum leaves. An antioxidant activity according to the CUPRAC method showed the highest antioxidant activity in the sample of the n-hexane fraction with a value of 31.9 µmol Trolox/g extract. Thirteen compounds were identified in the n-hexane fraction of P. crocatum leaves. Conclusions The highest antioxidant activity was obtained from ethyl acetate and n-hexane fraction. Various active compounds was identified in the highest value sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.