Developing a cost-effective pseudocapacitor electrode manufacturing process incorporating binder-free, green synthesis methods and single-step fabrication is crucial in advancing supercapacitor research. This study aims to address this pressing issue and contribute to the ongoing efforts in the field by introducing ULPING (Ultra-short Laser Pulse for In-situ Nanostructure Generation) technique for effective design. Laser irradiation was conducted in ambient conditions to form a CuO/NiO hybrid structure providing a synergistic contribution to the electrical behavior of the electrode. Mainly, the effects of surface morphology and electrochemical surface because of tuning laser intensity were analyzed. The samples demonstrated high oxide formation, fiber generation, excellent porosity, and ease of ion accessibility. Owing to a less than 10-min binder-free fabrication method, the electrochemical performance of the as-fabricated electrode was 25.8 mC cm−2 at a current density of 1 mA cm−2 proved to be excellent. These excellent surface properties were possible by the simple working principle of pulsed laser irradiation in ambient conditions and smart tuning of the important laser parameters. The CuO/NiO electrode demonstrates excellent conductivity and rewarding cyclic stability of 83.33% after 8000 cycles. This study demonstrates the potential of the ULPING technique as a green and simple method for fabricating high-performance pseudocapacitor electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.