for a one-Health investigation of antimicrobial resistance (AMR) in Enterococcus spp., isolates from humans and beef cattle along with abattoirs, manured fields, natural streams, and wastewater from both urban and cattle feedlot sources were collected over two years. Species identification of Enterococcus revealed distinct associations across the continuum. Of the 8430 isolates collected, Enterococcus faecium and Enterococcus faecalis were the main species in urban wastewater (90%) and clinical human isolates (99%); Enterococcus hirae predominated in cattle (92%) and feedlot catch-basins (60%), whereas natural streams harbored environmental Enterococcus spp. Wholegenome sequencing of E. faecalis (n = 366 isolates) and E. faecium (n = 342 isolates), revealed source clustering of isolates, indicative of distinct adaptation to their respective environments. phenotypic resistance to tetracyclines and macrolides encoded by tet(M) and erm(B) respectively, was prevalent among Enterococcus spp. regardless of source. for E. faecium from cattle, resistance to β-lactams and quinolones was observed among 3% and 8% of isolates respectively, compared to 76% and 70% of human clinical isolates. clinical vancomycin-resistant E. faecium exhibited high rates of multi-drug resistance, with resistance to all β-lactam, macrolides, and quinolones tested. Differences in the AMR profiles among isolates reflected antimicrobial use practices in each sector of the One-Health continuum. Public concern for antimicrobial use (AMU) and resistance (AMR) in livestock is increasing, as is continuing pressure for industries and governments to address these concerns. Science-based and epidemiologically sound research is critical to drive policy, communication, legislation, and inform consumer choices. To effectively investigate the current state of antimicrobial resistance, holistic One Health approaches are required to determine correlation between AMU and AMR across the human-agriculture-environment continuum. The genus Enterococcus is ubiquitous in nature and member species can be found in a range of habitats including soils, sediments, freshwater, marine water, beach sand, and a variety of plants 1,2. Enterococcus spp. are also common members of the normal gastrointestinal (GI) flora of both livestock and humans 3 , with their concentrations in human and animal feces typically ranging from 10 3-10 7 cells per gram 4-6. Enterococcus spp. are also commonly isolated from water contaminated by sewage or fecal wastes, and are widely used as bacteriological
In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n ؍ 42), Texas (n ؍ 6), and Nebraska (n ؍ 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n ؍ 55), P. multocida (n ؍ 8), and H. somni (n ؍ 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n ؍ 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n ؍ 18), P. multocida (n ؍ 3), and H. somni (n ؍ 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.
The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to Ϸ47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC-or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families.ATP-binding cassette ͉ expression ͉ high throughput ͉ transport ͉ tripartite ATP-independent periplasmic
Developments in high-throughput next generation sequencing (NGS) technology have rapidly advanced the understanding of overall microbial ecology as well as occurrence and diversity of specific genes within diverse environments. In the present study, we compared the ability of varying sequencing depths to generate meaningful information about the taxonomic structure and prevalence of antimicrobial resistance genes (ARGs) in the bovine fecal microbial community. Metagenomic sequencing was conducted on eight composite fecal samples originating from four beef cattle feedlots. Metagenomic DNA was sequenced to various depths, D1, D0.5 and D0.25, with average sample read counts of 117, 59 and 26 million, respectively. A comparative analysis of the relative abundance of reads aligning to different phyla and antimicrobial classes indicated that the relative proportions of read assignments remained fairly constant regardless of depth. However, the number of reads being assigned to ARGs as well as to microbial taxa increased significantly with increasing depth. We found a depth of D0.5 was suitable to describe the microbiome and resistome of cattle fecal samples. This study helps define a balance between cost and required sequencing depth to acquire meaningful results.
In proteobacteria, genes whose expression is modulated in response to the external concentration of inorganic phosphate are often regulated by the PhoB protein which binds to a conserved motif (Pho box) within their promoter regions. Using a position weight matrix algorithm derived from known Pho box sequences, we identified 96 putative Pho regulon members whose promoter regions contained one or more Pho boxs in the Sinorhizobium meliloti genome. Expression of these genes was examined through assays of reporter gene fusions and through comparison with published microarray data. Of 96 genes, 31 were induced and 3 were repressed by Pi starvation in a PhoB dependent manner. Novel Pho regulon members included several genes of unknown function. Comparative analysis across 12 proteobacterial genomes revealed highly conserved Pho regulon members including genes involved in Pi metabolism (pstS, phnC and ppdK). Genes with no obvious association with Pi metabolism were predicted to be Pho regulon members in S.meliloti and multiple organisms. These included smc01605 and smc04317 which are annotated as substrate binding proteins of iron transporters and katA encoding catalase. This data suggests that the Pho regulon overlaps and interacts with several other control circuits, such as the oxidative stress response and iron homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.