The alkylating agent temozolomide (TMZ) together with maximal safe bulk resection and focal radiotherapy comprises the standard treatment for glioblastoma (GB), a particularly aggressive and lethal primary brain tumor. GB affects 3.2 in 100,000 people who have an average survival time of around 14 months after presentation. Several key aspects make GB a difficult to treat disease, primarily including the high resistance of tumor cells to cell death-inducing substances or radiation and the combination of the highly invasive nature of the malignancy, i.e., treatment must affect the whole brain, and the protection from drugs of the tumor bulk—or at least of the invading cells—by the blood brain barrier (BBB). TMZ crosses the BBB, but—unlike classic chemotherapeutics—does not induce DNA damage or misalignment of segregating chromosomes directly. It has been described as a DNA alkylating agent, which leads to base mismatches that initiate futile DNA repair cycles; eventually, DNA strand breaks, which in turn induces cell death. However, while much is assumed about the function of TMZ and its mode of action, primary data are actually scarce and often contradictory. To improve GB treatment further, we need to fully understand what TMZ does to the tumor cells and their microenvironment. This is of particular importance, as novel therapeutic approaches are almost always clinically assessed in the presence of standard treatment, i.e., in the presence of TMZ. Therefore, potential pharmacological interactions between TMZ and novel drugs might occur with unforeseeable consequences.
Temozolomide (TMZ) currently remains the only chemotherapeutic component in the approved treatment scheme for Glioblastoma (GB), the most common primary brain tumour with a dismal patient’s survival prognosis of only ~15 months. While frequently described as an alkylating agent that causes DNA damage and thus—ultimately—cell death, a recent debate has been initiated to re-evaluate the therapeutic role of TMZ in GB. Here, we discuss the experimental use of TMZ and highlight how it differs from its clinical role. Four areas could be identified in which the experimental data is particularly limited in its translational potential: 1. transferring clinical dosing and scheduling to an experimental system and vice versa; 2. the different use of (non-inert) solvent in clinic and laboratory; 3. the limitations of established GB cell lines which only poorly mimic GB tumours; and 4. the limitations of animal models lacking an immune response. Discussing these limitations in a broader biomedical context, we offer suggestions as to how to improve transferability of data. Finally, we highlight an underexplored function of TMZ in modulating the immune system, as an example of where the aforementioned limitations impede the progression of our knowledge.
SMAUG1 is a human RNA-binding protein that is known to be dysregulated in a wide range of diseases. It is evolutionarily conserved and has been shown to form condensates containing translationally repressed RNAs. This indicates that condensation is central to proper SMAUG1 function; however, the factors governing condensation are largely unknown. In this work, we show that SMAUG1 drives the formation of liquid-like condensates in cells through its non-conventional C-terminal prion-like disordered region. We use biochemical assays to show that this liquid-liquid phase separation is independent of RNA binding and does not depend on other large, disordered regions that potentially harbor several binding sites for partner proteins. Using a combination of computational predictions, structural modeling, in vitro and in cell measurements, we also show that SMAUG1-driven condensation is negatively regulated by direct interactions with the members of the 14-3-3 protein family. These interactions are mediated by four distinct phospho-regulated short linear motifs embedded in the disordered regions of SMAUG1, working synergistically. Interactions between SMAUG1 and 14-3-3 proteins drive the dissolution of condensates, alter the dynamics of the condensed state, and are likely to be intertwined with currently unknown regulatory mechanisms. Our results provide information on how SMAUG1 phase separation is regulated and the first known instance of 14-3-3 proteins being able to completely dissolve condensates by directly interacting with a phase separation driver, which might be a general mechanism in cells to regulate biological condensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.