Land-based plastic waste, carried to the sea through rivers, is considered a main source of marine plastic pollution. However, most plastics that leak into the environment never make it into the ocean. Only a small fraction of plastics that are found in the terrestrial and aquatic compartments of river systems are emitted, and the vast majority can be retained for years, decades, and potentially centuries. In this perspective paper we introduce the concept of river systems as plastic reservoirs. Under normal conditions, hydrometeorological variables (such as wind, runoff and river discharge) mobilize, transport and deposit plastics within different river compartments (e.g., riverbanks, floodplains, lakes, estuaries). The emptying of these plastic reservoirs primarily occurs under extreme hydrological conditions (e.g., storms, floods). In this paper we specifically focus on the retention mechanisms within different river compartments, and their effect on the fate of the plastics that are accumulated on various timescales. We aim to introduce the concept of rivers as (long-term) sinks for plastic pollution, and provide suggestions for future research directions.
Plastic pollution in aquatic ecosystems is a growing threat to ecosystem health and human livelihood. Recent studies show that the majority of environmental plastics accumulate within river systems for years, decades and potentially even longer. Long‐term and system‐scale observations are key to improve the understanding of transport and retention dynamics, to identify sources and sinks, and to assess potential risks. The goal of this study was to quantify and explain the variation in floating plastic transport in the Rhine‐Meuse delta, using a novel 1‐year observational data set. We found a strong positive correlations between floating plastic transport and discharge. During peak discharge events, plastic transport was found up to six times higher than under normal conditions. Plastic transport varied up to a factor four along the Rhine and Meuse rivers, which is hypothesized to be related to the complex river network, locations of urban areas, and tidal dynamics. Altogether, our findings demonstrate the important role of hydrology as driving force of plastic transport dynamics. Our study emphasizes the need for exploring other factors that may explain the spatiotemporal variation in floating plastic transport. The world's most polluted rivers are connected to the ocean through complex deltas. Providing reliable observations and data‐driven insights in the transport and dynamics are key to optimize plastic pollution prevention and reduction strategies. With our paper we aim to contribute to both advancing the fundamental understanding of plastic transport dynamics, and the establishment of long‐term and harmonized data collection at the river basin scale.
Urban sources, wastewater treatment plants (WWTPs), untreated wastewater (not connected to WWTPs), and especially combined sewer overflow systems (CSS) including stormwater are major pathways for microplastics in the aquatic environment. We compile microplastics emission data for the Baltic Sea region, calculate emissions for each pathway and develop emission scenarios for selected polymer types, namely polyethylene (PE)/polypropylene (PP) and the polyester polyethylene terephthalate (PET). PE/PP and PET differ with respect to their density and can be regarded as representative for large groups of polymers. We consider particles between 20-500 µm with varying shapes. The emission scenarios serve as input for 3D-model simulations, which allow us to estimate transport, behavior, and deposition in the Baltic Sea environment. According to our model results, the average residence time of PET and PE/PP in the Baltic Sea water body is about 14 days. Microplastics from urban sources cause average concentrations of 1.4 PE/PP (0.7 PET) particles/m 2 sea surface (20-500 µm size range) in the Baltic Sea during summer. Average concentrations of PET, resulting from urban sources, at the sea floor are 4 particles/m 2 sediment surface during summer. Our model approach suggests that accumulation at the shoreline is the major sink for microplastic with annual coastal PE/PP and PET accumulation rates of up to 10 8 particles/m each near emission hot-spots and in enclosed and semi-closed systems. All concentrations show strong spatial and temporal variability and are linked to high uncertainties. The seasonality of CSS (including stormwater) emissions is assessed in detail. In the southeastern Baltic, emissions during July and August can be up to 50% of the annual CSS and above 1/3 of the total annual microplastic emissions. The practical consequences especially for monitoring, which should focus on beaches, are discussed. Further, it seems that PET, PE/PP can serve as indicators to assess the state of pollution.
Most marine litter monitoring methods used on beaches focus on macro-litter (>25 mm) only and show shortcomings regarding smaller litter classes (<25 mm), especially at Baltic Sea beaches. Therefore, we used a sand rake method developed for large micro- (2–5 mm), and meso- (5–25 mm) litter to quantify the overall pollution status of Baltic Sea beaches and to test if the method is useful in terms of the requirements of the Marine Strategy Framework Directive (MSFD). Between July 2017 and October 2019, 197 sand rake method surveys were carried out at 35 regions around the Baltic Sea. In total, 9345 litter pieces were found on an area of 10,271 m2 of which 69.9% were 2–25 mm in size. Artificial polymers (4921 litter pieces) were predominant (mean 52.7% ± 13.3). Abundance of litter was 0.91 pieces/m2 ± 1.50 (median 0.40 pieces/m2). The most common litter were industrial pellets (19.8%), non-identifiable plastic pieces 2–25 mm (17.3%), cigarette butts (15.3%), and paraffin (11.9%). At 15 surveys at the German North Sea island of Sylt the litter abundance ranged from 0.45 pieces/m2 (median) to 0.59 pieces/m2 ± 0.37 (mean). Here, 69.2% of the litter was 2–25 mm in size and paraffin was predominant (69.2%). Beaches show a high pollution level with large micro- and meso-litter (2–25 mm) and our data can serve as a Baltic-wide pollution baseline. In contrast to the naked eye OSPAR method for macro-litter, the sand rake method is generally applicable on all sandy beaches, both urban and remote. This method also allows for the provision of a full spatial pollution pattern and can serve for assessing the effectiveness of marine litter mitigation measures.
Urban sewage water pathways seem most important for microplastics emissions to the Baltic Sea. We use microplastics emission data for the entire Baltic Sea region, calculate emissions for three sewage water related urban pathways and develop emission scenarios for the majority of microplastics particles. All plastics are divided into potentially floating (density 0.8–1.0 g/cmł) and sinking (1.1–1.5 g/cmł) polymers and we address the size class of 20–500 μm. 6.7 × 1013 microplastics particles enter the Baltic Sea annually from urban pathways. 62% result from stormwater runoff including sewer overflow, 25% from wastewater treatment plants (WWTPs) and 13% from untreated wastewater. The emission scenarios serve as input for 3D-model simulations, which allow estimating transport, behaviour and deposition in the Baltic Sea environment. Our model approach suggests average annual microplastics concentrations in the water body of the central Baltic Sea of 1–4 particles/m2 sea surface and 1 particle/m3 in the upper 2 m sea surface layer. The majority of the particles is accumulated in upper sea surface layers. The model suggests that only between 6% (Arcona Basin) and 21% (Gotland Basin) of the particles are below a depth of 25 m. In coastal waters, the concentrations can exceed 10 particles/m3 in the upper 2 m surface water layer (e.g., Gulf of Riga, Gulf of Gdańsk) and 1 particle/m2 on the sediment surface. Usually within weeks, emitted microplastics are washed ashore causing annual coastal accumulations of up to 109 particles/m coastline within a few kilometres distance to emission sources. On average, above 106 particles/m are annually accumulated and trapped at coasts around the Baltic Sea. The reduction of the annual sewer overflow from presently 1.5% of the annual wastewater loads to 0.3% would reduce the total emissions to the Baltic Sea by 50%. If all sewage water would be connected to WWTPs and undergo a tertiary treatment, a reduction of 14.5% of the total emissions could be achieved. The effect of retention in rivers seems limited in the Baltic Sea region, because near coast emissions contribute around 50% of the total microplastics emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.