Context The results of preclinical and observational studies support the beneficial effect of soy isoflavones on cognition. Objective This review aimed to evaluate the effects of soy isoflavones on cognition in adults. Data Sources The PUBMED, EMBASE, Ovid Medline, Cochrane Library, and clinicaltrials.gov databases were searched. Study Selection Two researchers independently screened 1955 records, using the PICOS criteria: participants were adults; intervention was dietary sources with soy isoflavones or isolated soy isoflavones; comparator was any comparator; outcome was cognitive function; study type was randomized controlled trials (RCTs). A third researcher was consulted to resolve any discrepancies. Sixteen RCTs were included and their quality assessed. Data Extraction Information on study design, characteristics of participants, and outcomes was extracted. PRISMA guidelines were followed. Data Analysis A random-effects meta-analysis was used to pool estimates across studies. In the 16 RCTs (1386 participants, mean age = 60 y), soy isoflavones were found to improve overall cognitive function (standardized mean difference [SMD], 0.19; 95% confidence interval [CI], 0.07–0.32) and memory (SMD, 0.15; 95%CI, 0.03–0.26). Conclusion The results showed that soy isoflavones may improve cognitive function in adults. Systematic Review Registration PROSPERO registration no. CRD42018082070.
Per- and polyfluoroalkyl substances (PFAS) have been found to be associated with gestational diabetes mellitus (GDM) development, a maternal health disorder in pregnancy with negative effects that can extend beyond pregnancy. Studies that report on this association are difficult to summarize due to weak associations and wide confidence intervals. One way to advance this field is to sharpen the biologic theory on a causal pathway behind this association, and to measure it directly by way of molecular biomarkers. The aim of this review is to summarize the literature that supports a novel pathway between PFAS exposure and GDM development. Epidemiological studies demonstrate a clear association of biomarkers of thyroid hormones and glucose metabolism with GDM development. We report biologic plausibility and epidemiologic evidence that PFAS dysregulation of maternal thyroid hormones and thyrotropin (TSH) may disrupt glucose homeostasis, increasing the risk of GDM. Overall, epidemiological studies demonstrate that PFAS were positively associated with TSH and negatively with triiodothyronine (T3) and thyroxine (T4). PFAS were generally positively associated with glucose and insulin levels in pregnancy. We propose dysregulation of thyroid function and glucose metabolism may be a critical and missing component in the accurate estimation of PFAS on the risk of GDM.
Second hand smoke (SHS) introduces thousands of toxic chemicals into the lung, including carcinogens and oxidants, which cause direct airway epithelium tissue destruction. It can also illicit indirect damage through its effect on signaling pathways related to tissue cell repair and by the abnormal induction of inflammation into the lung. After repeated exposure to SHS, these symptoms can lead to the development of pulmonary inflammatory disorders, including chronic obstructive pulmonary disease (COPD). COPD is a severe pulmonary disease characterized by chronic inflammation and irreversible tissue destruction. There is no causal cure, as the mechanism behind the development and progression of the disease is still unknown. Recent discoveries implicate genetic predisposition associated with inflammatory response contributed to the development of COPD, linked to irregular innate and adaptive immunity, as well as a risk factor for cancer. The use of animal models for both cigarette smoke (CS) and SHS associated in vivo experiments has been crucial in elucidating the pathogenic mechanisms and genetic components involved in inflammation-related development of COPD.
Recent studies suggest that the ability to produce equol, a metabolite of the soya isoflavone daidzein, is beneficial to coronary health. Equol, generated by bacterial action on isoflavones in the human gut, is biologically more potent than dietary sources of isoflavones. Not all humans are equol producers. We investigated whether equol-producing status is favourably associated with risk factors for CHD following an intervention by dietary soya isoflavones. We systematically reviewed randomised controlled trials (RCT) that evaluated the effect of soya isoflavones on risk factors for CHD and that reported equol-producing status. We searched PubMed, EMBASE, Ovid Medline and the Cochrane Central Register for Controlled Trials published up to April 2015 and hand-searched bibliographies to identify the RCT. Characteristics of participants and outcomes measurements were extracted and qualitatively analysed. From a total of 1671 studies, we identified forty-two articles that satisfied our search criteria. The effects of equol on risk factors for CHD were mainly based on secondary analyses in these studies, thus with inadequate statistical power. Although fourteen out of the forty-two studies found that equol production after a soya isoflavone intervention significantly improved a range of risk factors including cholesterol and other lipids, inflammation and blood pressure variables, these results need further verification by sufficiently powered studies. The other twenty-eight studies primarily reported null results. RCT of equol, which has recently become available as a dietary supplement, on CHD and its risk factors are awaited.
Equol, a soy isoflavone-derived metabolite of the gut microbiome, may be the key cardioprotective component of soy isoflavones. Systematic reviews have reported that soy isoflavones have no to very small effects on traditional cardiovascular disease risk factors. However, the potential mechanistic mode of action of equol on non-traditional cardiovascular risk factors has not been systematically reviewed. We searched the PubMed through to July 2021 by using terms for equol and each of the following markers: inflammation, oxidation, endothelial function, vasodilation, atherosclerosis, arterial stiffness, and coronary heart disease. Of the 231 records identified, 69 articles met the inclusion criteria and were summarized. Our review suggests that equol is more lipophilic, bioavailable, and generally more potent compared to soy isoflavones. Cell culture, animal, and human studies show that equol possesses antioxidative, anti-inflammatory, and vasodilatory properties and improves arterial stiffness and atherosclerosis. Many of these actions are mediated through the estrogen receptor β. Overall, equol may have a greater cardioprotective benefit than soy isoflavones. Clinical studies of equol are warranted because equol is available as a dietary supplement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.