The role of genetic and epigenetic factors in the development of rheumatic diseases has been an interesting field of research over the past decades all around the world. Research on the role of microRNAs (miRNAs) in rheumatoid arthritis (RA) has been active and ongoing, and investigations have attempted to use miRNAs as biomarkers in disease diagnosis, prognosis, and treatment. This review focuses on experimental researches in the field of miRNAs and RA to present the data available up to this date and includes researches searched by keywords "microRNA" and "rheumatoid arthritis" in PubMed from 2008 to January 2015. All references were also searched for related papers. miRNAs are shown to act as proinflammatory or anti-inflammatory agents in diverse cell types, and their role seems to be regulatory in most instances. Researchers have evaluated miRNAs in patients compared to controls or have investigated their role by overexpressing or silencing them. Multiple targets have been identified in vivo, in vitro, or in silico, and the researches still continue to show their efficacy in clinical settings.
BackgroundDifferent cells and mediators in the tumor microenvironment play important roles in the progression of breast cancer. The aim of this study was to determine the composition of the microenvironment during tumor progression in order to discover new related biomarkers and potentials for targeted therapy.MethodsIn this study, breast cancer biopsies from four different stages, and control breast biopsies were collected. Then, the mRNA expression of several markers related to different CD4+ T cell subsets including regulatory T cells (Treg), T helper (Th) type 1, 2 and 17 were determined. In addition, we investigated the expression of two inflammatory cytokines (TNF-α and IL-6) and inflammatory mediators including FASL, IDO, SOCS1, VEGF, and CCR7.ResultsThe results showed that the expression of Th1 and Th17 genes was decreased in tumor tissues compared to control tissues. In addition, we found that the gene expression related to these two cell subsets decreased during cancer progression. Moreover, the expression level of TNF-α increased with tumor progression.ConclusionWe conclude that the expression of genes related to immune response and inflammation is different between tumor tissues and control tissues. In addition, this difference was perpetuated through the different stages of cancer.
We propose that in the microenvironment of inflammatory tissues, including tumours, extracellular proteinases can modulate cell signalling in part by regulating proteinase-activated receptors (PARs). We have been exploring this mechanism in a variety of inflammation and tumour-related settings that include tumour-derived cultured cells from prostate and bladder cancer, as well as immune inflammatory cells that are involved in the pathology of inflammatory diseases including multiple sclerosis. Our work showed that proteinase signalling via the PARs affects prostate and bladder cancer-derived tumour cell behaviour and can regulate calcium signalling in human T-cell and macrophage-related inflammatory cells as well as in murine splenocytes. Further, we found that the tumour-derived prostate cancer cells and immune-related cells (Jurkat, THP1, mouse splenocytes) can produce PAR-regulating proteinases (including kallikreins: kallikrein-related peptidases), that can control tissue function by both a paracrine and autocrine mechanism. We suggest that this PAR-driven signalling process involving secreted microenvironment proteinases can play a key role in cancer and inflammatory diseases including multiple sclerosis.
Our findings show that β-D-mannuronic acid is a safe agent which has no adverse effect on regulatory miRNA-155 and miRNA-221 in dendritic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.