Polysaccharide-based edible coatings are served as an attractive preservation method for postharvest maintenance of most fruits. The current study examined the effect of carboxymethylcellulose (CMC)- and pectin (Pec)- based edible coatings on titratable acidity (TA), firmness; vitamin C (vit C); total soluble solids (TSS); pH; total phenolics; anthocyanin and flavonoid contents; total antioxidant capacity (based on 1,1-Diphenyl-2-picryl-hydrazyl hydrate (DPPH)); the activities of peroxidase (POD), polyphenol oxidase (PPO) and polygalacturonase (PG) enzymes; and weight loss during cold storage. The results showed that each coating and their combinations caused positive effects in all measured parameters except weight loss. The applied coatings preserved firmness and improved total phenols, anthocyanin and flavonoid contents, antioxidant capacity and POD activity. In addition, TSS decreased and pH values remained more or less stable with the coating application. The coatings delayed TA and vitamin C loss, and decreased enzymatic activities such as PPO and PG. It could be stated that CMC at 1% and Pec at 1.5% separately demonstrated the best results for most of the measured parameters; and 0.5% Pec + 1.5% CMC could be considered as the best combination. In conclusion, application of CMC, Pec, or their combinations would be considered as an interesting approach to improve postharvest quality characteristics of plum fruit.
Exploiting safer methods for fruit preservation such as application of edible coatings can improve shelf life, valuable characteristics, and antioxidative capacity. The current study aimed to investigate the effect of a pectin-based edible coating on antioxidative capacity of plum fruit during shelf life (19 ± 2 ℃ and 65% relative humidity for eight days). To do this, three solutions (0.5, 1, and 1.5%) of pectin, plasticized by glycerol (0.3% w/v), were applied on plum fruit and compared to a control treated with only distilled water. Ascorbic acid, total phenolics, anthocyanin and flavonoid contents, total antioxidative capacity based on 1,1-diphenyl-2-picryl-hydrazyl hydrate method, peroxidase (as an antioxidant enzyme), and polyphenol oxidase (as an oxidant enzyme) activities were recorded during this period. The results demonstrated that pectin-based edible coating was significantly effective on maintaining ascorbic acid, anthocyanin and flavonoid contents, and antioxidative capacity in plum fruits (P ≤ 0.01). The activities of enzymes were significantly affected by the coatings; peroxidase activity increased and polyphenol oxidase activity decreased (P ≤ 0.01). All pectin concentrations significantly caused higher ascorbic acid and anthocyanin contents, antioxidative capacity, and peroxidase activity but a lower polyphenol oxidase activity than the control; however, just 1 and 1.5% concentrations were effective in terms of total phenolic compounds and flavonoid content, respectively, and the other concentrations acted the same as the control. In general, the coating constituted from 1.5% pectin showed the best results for most measured parameters. Considering the influences of pectin-based edible coating on antioxidative characteristics of plum fruits, its application can be potentially regarded as a favorable method to enhance nutritional value of fruits.
Polysaccharide-based edible coatings are served as an attractive preservation method for postharvest maintenance of most fruits. The current study examined the effect of carboxymethylcellulose (CMC)- and pectin (Pec)- based edible coatings on weight loss, firmness, total soluble solids (TSS), pH¬, titratable acidity (TA), vitamin C (vit C), total phenolics, anthocyanin and flavonoid contents, total antioxidant capacity (based on DPPH) and the activities of peroxidase (POD), polyphenol oxidase (PPO) and polygalacturonase (PG) enzymes during cold storage. The results showed that each coating and their combinations caused positive effects in all measured parameters except weight loss. The applied coatings preserved firmness and improved total phenols, anthocyanin and flavonoid contents, antioxidant capacity and POD activity. In addition, the coatings retarded TSS and pH enhancement and TA and vit C loss and decreased PPO and PG activities. It could be stated that CMC at 1 % and Pec at 1.5 % separately demonstrated the best results at most measured parameters; and among the combinations 0.5 % Pec + 1.5 % CMC acted better than the other treatments. Henceforth, application of CMC and/or Pec and/or their combinations would be considered as favorable approaches to improve postharvest quality characteristics of plum fruit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.