The problematic combination of a rising prevalence of skin and soft tissue infections and the growing rate of life-threatening antibiotic resistant infections presents an urgent, unmet need for the healthcare industry. These evolutionary resistances originate from mutations in the bacterial cell walls which prevent effective diffusion of antibiotics. Gram-negative bacteria are of special consideration due to the natural resistance to many common antibiotics due to the unique bilayer structure of the cell wall. The system developed here provides one solution to this problem through a wearable therapy that delivers an utilizes gaseous ozone as an adjunct therapy with topical antibiotics through a novel dressing with drug-eluding nanofibers (NFs). This technology drastically increases the sensitivity of gram-negative bacteria to common antibiotics by using oxidative ozone to bypass resistances created by the bacterial cell wall. To enable simple and effective application of adjunct therapy, ozone delivery and topical antibiotics have been integrated into a single application patch. The drug delivery NFs are generated via electrospinning in a fast-dissolve PVA mat without inducing decreasing gas permeability of the dressing. A systematic study found ozone generation at 4mg/h provided optimal ozone levels for high antimicrobial performance with minimal cytotoxicity. This ozone treatment was used with adjunct therapy delivered by the system in vitro. Results showed complete eradication of Gram-negative bacteria with ozone and antibiotics typically used only for Gram-positive bacteria, which showed the strength of ozone as an enabling adjunct treatment option to sensitize bacteria strains to otherwise ineffective antibiotics. Furthermore, the treatment is shown through biocompatibilty testing to exhibit no cytotoxic effect on human fibroblast cells.
Roll-to-roll printing has significantly shortened the time from design to production of sensors and IoT devices, while being cost-effective for mass production. But due to less manufacturing tolerance controls available, properties such as sensor thickness, composition, roughness, etc., cannot be precisely controlled. Since these properties likely affect the sensor behavior, roll-to-roll printed sensors require validation testing before they can be deployed in the field. In this work, we improve the testing of Nitrate sensors that need to be calibrated in a solution of known Nitrate concentration for around 1–2 days. To accelerate this process, we observe the initial behavior of the sensors for a few hours, and use a physics-informed machine learning method to predict their measurements 24 hours in the future, thus saving valuable time and testing resources. Due to the variability in roll-to-roll printing, this prediction task requires models that are robust to changes in properties of the new test sensors. We show that existing methods fail at this task and describe a physics-informed machine learning method that improves the prediction robustness to different testing conditions (≈ 1.7× lower in real-world data and ≈ 5× lower in synthetic data when compared with the current state-of-the-art physics-informed machine learning method).
Dermal wound infections are a rising source of morbidity and mortality in patients worldwide as new and worsening complications reduce the efficacy of traditional treatments. These challenges in wound care are increasingly caused by comorbidities such as obesity and diabetes as well as surging rates of antibiotic resistance. As a result, there is an urgent need for alternative treatment options. Gaseous ozone has shown great promise as a potential new treatment for infected dermal wounds. In this brief review of current wound therapy techniques found in the literature, an in-depth discussion of the mechanisms, benefits, and results of topical ozone gas as a therapy for infected dermal wounds is presented. This includes studies of ozone applied to wounds performed in vitro, in vivo, and clinical settings, as well as the use of ozone as an adjunct therapy for increasing the efficacy of traditional treatments. The overwhelming evidence suggests that ozone exhibits significant antimicrobial properties and has been shown to promote wound healing factors, especially when applied between 5–60 ppm. As such, this promising alternative therapy warrants a significant investment of time and resources to fully utilize ozone as an effective treatment against antibiotic resistant bacteria and other rising challenges in wound treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.