Studying human postural structure is one of the challenging issues among scholars and physicians. The spine is known as the central axis of the body, and due to various genetic and environmental reasons, it could suffer from deformities that cause physical dysfunction and correspondingly reduce people's quality of life. Radiography is the most common method for detecting these deformities and requires monitoring and follow-up until full treatment. This method frequently exposes the patient to X-rays and ionization. Therefore, cancer risk is increased in the patient and could be riskier for children or pregnant women. To prevent this, several solutions have been proposed using topographic data analysis of the human back surface. The purpose of this research is to provide an entirely safe and non-invasive method to examine the spiral structure and its deformities. Hence, it is attempted to find the exact location of anatomical landmarks on the human back surface, which provides useful and practical information about the status of the human postural structure to the physician. In this study, using Microsoft Kinect sensor, the depth images from the human back surface of 105 people were recorded and, our proposed approach - Deep convolution neural network- was used as a model to estimate the location of anatomical landmarks. In network architecture, two learning processes, including landmark position and affinity between the two associated landmarks, are successively performed in two separate branches. This is a bottom-up approach; thus, the runtime complexity is considerably reduced, and then the resulting anatomical points are evaluated concerning manual landmarks marked by the operator as the benchmark. Our results showed that 86.9% of PDJ and 80% of PCK. According to the results, this study was more effective than other methods with more than thousands of training data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.