In surface mines, bench blasting is a typical way of excavating hard rock mass. Although a significant development has taken place in explosive technology but still only a part of the energy is used to excavate and a large proportion of energy is wasted away and creates a number of nuisances. Backbreak, massive rock fragmentation, and high-intensity ground vibration are all symptoms of improper blasting. As a result, production costs increase significantly while productivity decreases. The blasting outcomes are affected by a variety of factors, which may be classified into three categories: rock properties, explosive properties, and blast geometry. Consequently, it is necessary to examine the effect of these parameters on bench blasting. So, in this study, a sensitivity analysis has been performed on various blast design parameters using the Taguchi method to study the influence of blast design parameters on blast vibration, backbreak, and rock fragmentation. A total of 32 experiments have been designed and numerical modeling was also carried out, using LS DYNA software to simulate the blast results. It was found that the blast hole diameter is the most important factor influencing the blasting outcomes. However, the number of rows in a blast affects backbreak almost slightly more than the hole diameter, but blast vibrations and the surrounding rock damage strongly depend on the hole diameter. Furthermore, rock blast geometry significantly affected rock blast vibration and damage compared to explosive properties. However, both blast geometry parameters and explosive properties play a significant role in backbreaking.
In underground mines, sublevel stoping is used among a variety of different methods for mining an orebody, which creates large underground openings. In this case, the stability of these openings is affected by a number of factors, including the geometrical characteristics of the rock and mining‐induced stresses. In this study, a sensitivity analysis was conducted with the numerical, squat pillar, and Mathews stability methods using the Taguchi technique to properly understand the influence of geometric parameters and stress on stope stability according to Sormeh underground mine data. The results show a full factorial analysis is more reliable since stope stability is a complex process. Furthermore, the numerical results indicate that overburden stress has the most impact on stope stability, followed by stope height. However, the results obtained with Mathews and squat pillar methods show that stope height has the greatest impact, followed by overburden stress and span. It appears that these methods overestimate the impact of stope height. Therefore, it is highly recommended that Mathews and squat pillar methods should not be used in high stope that is divided with several sill pillars. Nonetheless, Mathews method cannot accurately predict how the sill pillar impacts the stope stability. In addition, numerical analysis shows that all geometric parameters affect the roof safety factor, whereas the sill pillar has no significant influence on the safety factor of the hanging wall, which is primarily determined by the stope height–span ratio.
Acid fracturing simulation has been widely used to improve well performance in carbonate reservoirs. In this study, a computational method is presented to optimize acid fracturing treatments. First, fracture geometry parameters are calculated using unified fracture design methods. Then, the controllable design parameters are iterated till the fracture geometry parameters reach their optimal values. The results show higher flow rates are required to achieve optimal fracture geometry parameters with larger acid volumes. Detailed sensitivity analyses are performed on controllable and reservoir parameters. It shows that higher flow rates should be applied for fluids with lower viscosity. Straight acid reaches optimal conditions at higher flow rates and lower volumes. These conditions for retarded acids appear to be only at lower flow rates and higher volumes. The study of the acid concentration for gelled acids shows that both flow rate and volume increase as the concentration increases. For the formation with lower permeability, a higher flow rate is required to achieve the desired larger fracture half-length and smaller fracture width. Further investigations also show that the formation with higher Young’s modulus requires decreasing the acid volume and increasing the optimal flow rate, while the formation with higher closure stress requires increasing the acid volume and decreasing the flow rate.
Acid fracturing simulation is used widely to optimize carbonate reservoirs and improve acid fracturing treatment performance. In this study, a method was used to minimize the risk of the acid fracturing treatment. First, optimal fracture geometry parameters with UFD methods are calculated. After that, design components change as long as fracture geometry parameters reach their optimal values. The results showed a high flow rate needed to achieve optimal fracture geometry parameters with increasing acid volume. Sensitivity analysis was performed on controllable and reservoir parameters. It observed that a high flow rate should be applied for a low fluid viscosity to achieve the optimization goals. Straight acid reaches optimal conditions at a high flow rate and low volume. These conditions for retarded acids appear only at a low flow rate and high volume. The study of the acid concentration for gelled acid showed that as it increased, the flow rate and volume increased. Besides, for low permeability formation, a large fracture half-length and small fracture width are desirable. In this case, a higher flow rate will be required. The sensitivity analysis showed that the optimum flow rate and acid volume increase and decrease for the high Young's modulus. The effect of closure stress was also investigated and observed for a sample with high closure stress, low flow rate, and high acid volume are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.