This study reports experimental analyses of adsorption thermodynamics using the polymeric adsorbent surface, polyethersulfone (PES), with different molar ratios of ZnO nanoparticles. Fourier transform infrared (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM) were performed to study the adsorbent structure and morphology. FTIR results showed that both PES and ZnO nanoparticles were successfully incorporated into the nanocomposite, while the XRD analysis showed that the crystal adsorbent characteristics did not change. FESEM of the ZnO exhibits the formation of aggregates in the form of small spherical grains, and the sizes were in the range of 45-65 nm. The effects of different parameters (contact time, pH, temperature, adsorbent dosage, and diazinon concentrations) were investigated to find the optimal conditions of the prepared adsorbents. The equilibrium data for diazinon adsorption onto PES and ZnO/PES were analyzed using the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Jovanovic, and Flory-Huggins models. Based on the values of the correlation coefficient, Langmuir and pseudosecond-order were found to be the best-fitting model. In addition, adsorption at different temperatures (288.15-303.15 K) was used to determine thermodynamic parameters such as free energy, enthalpy, and entropy changes. Finally, these results allow designing different processing units for pollution removal.
This chapter describes the Fisher-Tropsch Synthesis (FTS) method. Although it has been already applied at industrial scale for a century, the FTS has gained renewed interests as it is a key step for converting alternative feedstocks, including biomass to transportation fuels. It is the means by which synthesis gas containing hydrogen and carbon monoxide is converted to hydrocarbon products. The chapter explores that interest in FTS technology is increasing rapidly. In addition, the FTS process and products upgrading are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.