A synergistic effect on flame retardancy, thermal stability, and mechanical properties was found when sepiolite was incorporated into a linear low-density polyethylene (LLDPE)/magnesium hydroxide (MH) composite. Different amounts of sepiolite (up to a maximum concentration of 15 phr) were added to a standard LLDPE/MH formulation, and vinyltriethoxysilane was used as a compatibilizer as well as a crosslinking agent. The thermal stability and the oxidation induction time increased with increasing sepiolite content in the LLDPE composites. Limiting oxygen index (LOI) results indicated an increase in LOI with the addition of sepiolite, and an LOI value of 36.5% was observed with 15 phr sepiolite in the LLDPE/MH formulation. The addition of sepiolite increased the gel content and tensile strength of all samples and lowered the elongation at break. The heat deflection, Vicat softening temperature, and hardness were also improved by the incorporation of sepiolite. This synergistic behavior of sepiolite with MH could be used in halogen-free, flame-retardant LLDPE formulations.
A study on the radiological hazard in Portland cement due to the presence of naturally occurring radioactive materials is being carried out. The Portland cement manufactured in the Islamabad/Rawalpindi region of Pakistan, intermediate products (clinker) and the various raw materials which compose the product have been analysed for (226)Ra, (232)Th and (40)K using a gamma spectrometry system with a N-type high-purity germanium detector of 80 % relative efficiency. From the measured gamma ray spectra, specific activities were determined. The mean values of the total specific activity of (226)Ra, (232)Th and (40)K are 34.2±11.9, 29.1±3.6 and 295.1±66.9 Bq kg(-1), respectively in Portland cement, 28.4±8.7, 11.3±1.7 and 63.1±17.3 Bq kg(-1), respectively in lime stone, 8.2±1.9, 16.2±3.9 and 187.7±53.2 Bq kg(-1), respectively in gypsum, 34.7±13.1, 41.2±6.7 and 187.6±17.2 Bq kg(-1), respectively in clay, 41.1±11.8, 39.3±6.9 and 195.1±29.2 Bq kg(-1), respectively in latrite and 51.1±18.2, 23.2±1.2 and 258.4±15.3 Bq kg(-1), respectively in clinker. The radium equivalent activities (Ra(eq)), external hazard index (H(ex)), internal hazard index (H(in)), absorbed dose rate in air (D) and annual effective dose rate (E(eff)) were also determined. The measured activity concentrations for these radio nuclides and radiological indices were compared with the reported national and international data. All these measured values are comparable with the worldwide data reported in UNSCEAR publications.
This study was undertaken to asses the radioactivity level of limestone and gypsum and its associated radiological hazard due to the presence of naturally occurring radioactive materials. Representative samples of limestone and gypsum were collected from cement factories located in the Rawalpindi/Islamabad region of Pakistan and were analysed by using an N-type high-purity germanium detector of 80 % relative efficiency. The average activity concentration of (40)K, (226)Ra and (232)Th were 60.22±3.47, 29.25±5.23 and 4.07±3.31 Bq kg(-1), respectively, in limestone and 70.86±4.1, 5.01±2.10 and 4.49±3.1 Bq kg(-1), respectively, in gypsum. The radiological hazard parameters radium equivalent activities, absorbed dose rate in air, external hazard index, internal hazard index, annual effective dose equivalent, gamma index and alpha index were computed. The results of the average activity concentrations of (40)K, (226)Ra and (232)Th and radiological hazard parameters were within the range of the reported average worldwide/United Nations Scientific Committee on the Effect of Atomic Radiation values. It is concluded that limestone and gypsum used in the Rawalpindi/Islamabad region does not pose any excessive radiological health hazard as a building raw materials and in industrial uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.