BCL2 was the first ever known gene for anti-apoptotic activity, that encodes for essential proteins of the external mitochondrial membrane. Regarding tumorigenesis, deregulated BCL2 expression and related proteins have been recognized as characteristic of several human cancers and there is concrete evidence that the deregulated expression of BCL2 like proteins plays a vital role in tumor development, persistence and therapeutic resistance. Therefore, it is important to identify the polymorphisms of BCL2 that are both structurally and functionally important for research to find their possible malfunctions and therapeutics. For this reason, in our research, we have used a variety of bioinformatics tools to recognize the most destructive nsSNPs that may be important for the structure and function of BCL2. In silico tools, PROVEAN, SIFT, SNP&GO, PhD SNP, and PolyPhen2 included a variety of other tools such as I Mutant, MutPred, and ConSurf, to study their conservation profiles to validate their stability, structural, and functional impacts. Post-transcriptional alteration sites were also predicted followed by application of 3-D mapping with I-TASSER and Phyre2 tools. Furthermore, the gene interactions were mapped via STRING and GeneMANIA. We also found that nsSNPs Q118R (rs759928495), G193R (rs1197820694), R129C (rs777784952), and Ll81V (rs752310933) are the most destructive nsSNPs in BCL2 genes that can have a vital part in BCL2 protein defects and possibly cause different cancers. Gene-gene interactions showed relation of BCL2 with other genes depicting its importance in several pathways and co-expressions. This research is the first of its kind and offers future prospects for the development of dedicated medicines as well. In the animal models, the effects of BCL2 can also be tested in diseases. Such should be the study of BCL2 proteins from cancer patients. The effects of BCL2 can also be tested on animal models.
The Toll-interacting protein (TOLLIP), first detected by hybrid screening using Interleukin-1 receptor accessory protein in 2000, is ubiquitous and its TLR signaling cascade gets negatively regulated by TOLLIP in particular by impeding the TLR4 and TLR2 pathways. Toll-interacting protein facilitates TLR and TGF-β type 1 receptor intracellular localization and lysosomal degradation and exerts its anti-apoptosis and pro-autophagy effects through interaction with a target of Myb1 membrane trafficking protein 1 (TOM1) in autoimmunity. It also protects intestinal epithelial cells from apoptosis induced by (TNF-α) (IFN-γ) signaling and acts as a cargo adaptor linking (ATG8) autophagy gene 8 and microtubule-associated protein 1 light chain 3. Ubiquitin-modified cell debris along with coated autophagosomes removes harmful protein aggregates and maintains cellular homeostasis. It is therefore structurally and functionally important to detect TOLLIP polymorphisms to indicate the possible malfunctions and therapeutics. We have identified the gap of available data on nsSNPs in the TOLLIP gene in previous studies. Hence, We have used a wide range of bioinformatic techniques in this study to identify the most destructive nsSNPs in the TOLLIP gene. The in-silico tools such as PROVEAN, SIFT, SNP&GO, PhD SNP, and PolyPhen2 have been used followed by I Mutant, MutPred, and ConSurf. The 3-D mapping was carried out with I-TASSER and Phyre2. Though, STRING and GeneMANIA proposed the gene to gene interaction of TOLLIP. Our study identified G19D (rs866744102), G32R (rs1308704061), D71N (rs777772934), and E72G (rs1202660177) as the four most lethal non-synonymous SNPs in TOLLIP genes, which may play an essential part in defects of TOLLIP Protein and probably cause a different type of diseases. This is the first study of its kind, and it could pave the way in the field of medical drugs in the future. The influence of these nsSNPs in the normal functioning of TOLLIP can also be evaluated in animal models to identify the underlying biochemical pathway involved in diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.