The knowledge of normal metabolite values for neonates is key to establishing robust cut-off values to diagnose diseases, to predict the occurrence of new diseases, to monitor a neonate's metabolism, or to assess their general health status. For full term-newborns, many reference biochemical values are available for blood, serum, plasma and cerebrospinal fluid. However, there is a surprising lack of information about normal urine concentration values for a large number of important metabolites in neonates. In the present work, we used targeted tandem mass spectrometry (MS/MS)-based metabolomic assays to identify and quantify 136 metabolites of biomedical interest in the urine from 48 healthy, full-term term neonates, collected in the first 24 h of life. In addition to this experimental study, we performed a literature review (covering the past eight years and over 500 papers) to update the references values in the Human Metabolome Database/Urine Metabolome Database (HMDB/UMDB). Notably, 86 of the experimentally measured urinary metabolites are being reported in neonates/infants for the first time and another 20 metabolites are being reported in human urine for the first time ever. Sex differences were found for 15 metabolites. The literature review allowed us to identify another 78 urinary metabolites with concentration data. As a result, reference concentration values and ranges for 378 neonatal urinary metabolites are now publicly accessible via the HMDB.
Bark beetles form symbiotic associations with multiple species of fungi that supplement their metabolic needs. However, the relative contributions of each symbiont to the nutrition of bark beetles have been largely unexplored. Thus, we evaluated the ability of three fungal symbionts of mountain pine beetle to concentrate nitrogen and produce ergosterol while infecting phloem of a novel host jack pine. Ergosterol was used as proxy to determine the fungal biomass (hyphal density) in the current study. We inoculated 80 trees in two forest stands with one of the three fungal species or a non-fungal (control) agar. Six weeks later, we collected phloem from the necrotic lesions induced by the fungi, uninfected tissues adjacent to lesions, and non-inoculated control trees. We found that nutritional contributions varied with fungal species. Nitrogen in lesions was higher in trees inoculated with Ophiostoma montium or control trees, relative to Grosmannia clavigera or Leptographium longiclavatum. Furthermore, concentrations of ergosterol were higher in O. montium lesions compared to other tissues or treatments. These results suggest that O. montium differs from G. clavigera and L. longiclavatum in terms of acquiring nitrogen from host tissues and producing ergosterol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.