The inherent brittleness of polylactide (PLA) poses considerable scientific challenges and limits its large-scale applications. Here, we propose and demonstrate a new industrially relevant methodology to develop a polylactide (PLA)-based nanoblend having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer (HBP) was in-situ cross-linked with a polyanhydride (PA) in the PLA matrix during melt processing. There was formation of new hyperbranched polymer-based cross-linked particles in the PLA matrix. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) revealed the sea-island morphology of PLA-cross-linked HBP blend. The domain size of cross-linked HBP particles in the PLA matrix was less than 100 nm as obtained from TEM. The presence of cross-linked hyperbranched polymer in the PLA matrix exhibited ∼570% and ∼847% improvement in the toughness and elongation at break, respectively, as compared to unmodified PLA. The increase in the ductility of modified PLA was related to stress whitening and multiple crazing initiated in the presence of cross-linked HBP particles. Formation of a networked interface as revealed by rheological data was associated with enhanced compatibility of the PLA-cross-linked HBP blend as compared to the PLA/HBP blend. The cross-linking reaction of HBP with PA was confirmed with the help of Fourier transform infrared spectroscopy (FTIR) and low-temperature dynamical mechanical thermal analysis (DMTA).
Novel "green" composites were successfully fabricated from recycled cellulose fibers (RCF) and a bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by melt mixing technique. Various weight contents (15%, 30%, and 40%) of the fibers were incorporated in the PHBV matrix. The effect of the fiber weight contents on the thermal, mechanical, and dynamic-mechanical thermal properties of PHBV was investigated and a comparative property analysis was performed with RCF-reinforced polypropylene (PP) composites. The tensile and storage moduli of the PHBV-based composites were improved by 220% and 190%, respectively, by reinforcement with 40 wt % RCF. Halpin-Tsai and Tsai-Pagano's equations were applied for the theoretical modeling of the tensile modulus of PHBV-based composites. The heat deflection temperature (HDT) of the PHBV-based composites was increased from 105 to 131 degrees C, while the coefficient of linear thermal expansion (CLTE) value was reduced by 70% upon reinforcement with 40 wt % RCF. The PHBV-based composites had also shown better tensile and storage moduli and lower CLTE values than PP-based composites. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to study the melting behavior, thermal stability, and morphology of the composite systems, respectively.
A simple energy balance model is created for use in developing mitigation strategies for the urban heat island effect. The model is initially applied to the city of Phoenix, Arizona. There are six primary contributions to the overall energy balance: incident solar radiation, anthropogenic heat input, conduction heat loss, outgoing evapotranspiration, outgoing convection, and outgoing emitted radiation. Meteorological data are input to the model, which then computes an urban characteristic temperature at a calculated time step for a specified time range. The model temperature is shown to have the same periodic behavior as the experimentally measured air temperatures. Predicted temperature changes, caused by increasing the average urban albedo, agree within 0.18C with comparable maximum surface temperature predictions from the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The present model, while maintaining valid energy-balance physics, allows users to quickly and easily predict the relative effects of urban heat island mitigation measures. Representative mitigation strategies, namely changes in average albedo and long-wavelength emissivity are presented here. Increasing the albedo leads to the greater reduction in daytime maximum temperatures; increasing the emissivity leads to a greater reduction in nighttime minimum temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.