We introduce linear methods for model-based tracking of nonrigid 3D objects and for acquiring such models from video. 3D motions and flexions are calculated directly from image intensities without information-lossy intermediate results. Measurement uncertainty is quantified and fully propagated through the inverse model to yield posterior mean (PM) and mode (MAP) pose estimates. A Bayesian framework manages uncertainty, accommodates priors, and gives confidence measures. We obtain highly accurate and robust closed-form estimators by minimizing information loss from non-reversible (inner-product and least-squares) operations, and, when unavoidable, performing such operations with the appropriate error norm. For model acquisition, we show how to refine a crude or generic model to fit the video subject. We demonstrate with tracking, model refinement, and super-resolution texture lifting from low-quality low-resolution video.This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Information Technology Center America. All rights reserved.
We propose a method for learning embeddings for fewshot learning that is suitable for use with any number of ways and any number of shots (shot-free). Rather than fixing the class prototypes to be the Euclidean average of sample embeddings, we allow them to live in a higherdimensional space (embedded class models) and learn the prototypes along with the model parameters. The class representation function is defined implicitly, which allows us to deal with a variable number of shots per each class with a simple constant-size architecture. The class embedding encompasses metric learning, that facilitates adding new classes without crowding the class representation space. Despite being general and not tuned to the benchmark, our approach achieves state-of-the-art performance on the standard few-shot benchmark datasets. Figure 1. One image of a mushroom (Muscaria) may be enough to recognize it in the wild (left); in other cases, there may be more subtle differences between an edible (Russula, shown in the center) and a deadly one (Phalloides, shown on the right), but still few samples are enough for humans.
Abstract. This paper studies the inference of 3D shape from a set of Ò noisy photos. We derive a probabilistic framework to specify what one can infer about 3D shape for arbitrarily-shaped, Lambertian scenes and arbitrary viewpoint configurations. Based on formal definitions of visibility, occupancy, emptiness, and photo-consistency, the theoretical development yields a formulation of the Photo Hull Distribution, the tightest probabilistic bound on the scene's true shape that can be inferred from the photos. We show how to (1) express this distribution in terms of image measurements, (2) represent it compactly by assigning an occupancy probability to each point in space, and (3) design a stochastic reconstruction algorithm that draws fair samples (i.e., 3D photo hulls) from it. We also present experimental results for complex 3D scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.