A convergent total synthesis of Promysalin, a metabolite of Pseudomonas putida RW10S1 with antibiotic activity, is described. The synthetic approach is based around a salicyldehydroproline core and a dihydroxymyristamide fragment. Crucial steps include a MacMillan asymmetric α-hydroxylation applied for the construction of the myristamide framework, and a lactam reduction by Superhydride ® to obtain the dehydroproline fragment. Because of the modular nature of the synthesis, ready access to analogues for biological evaluation is available.
SummaryThe first total synthesis of leopolic acid A, a fungal metabolite with a rare 2,3-pyrrolidinedione nucleus linked to an ureido dipeptide, was designed and carried out. Crucial steps for the strategy include a Dieckmann cyclization to obtain the 2,3-pyrrolidinedione ring and a Wittig olefination to install the polymethylene chain. An oxazolidinone-containing leopolic acid A analogue was also synthesized. The antibacterial activity showed by both compounds suggests that they could be considered as promising candidates for future developments.
Promysalin was previously described as a narrow spectrum molecule with a unique species-specific activity against Pseudomonas aeruginosa. Here we demonstrate that promysalin is active against Gram-positive and Gram-negative bacteria using a microdilution assay. Promysalin acts on Gram-positive bacteria with a mechanism of action involving cell membrane damage with leakage of intracellular components. The evaluation of MICs and MBCs on 11 promysalin analogs, synthesized utilizing diverted total synthesis, allowed the identification of the structural moieties potentially involved in cell membrane interaction and damage. The mechanism of action of promysalin against Gram-negative bacteria is still not clarified, even if a synergistic effect with the bisguanidine chlorhexidine on cell membrane disruption has been observed.
Among the novel approaches applied to antimicrobial drug development, natural product-inspired synthesis plays a major role, by providing biologically validated starting points. Tetramic acids, a class of natural products containing a 2,4-pyrrolidinedione ring system, have attracted considerable attention for their antibacterial, antiviral, antifungal and anticancer activities. On the contrary, compounds with a 2,3-pyrrolidinedione skeleton have been considerably less investigated. In this work, we established chemical routes to the substituted 2,3-pyrrolidinedione core, which enabled the introduction of a wide range of diversity. In the perspective of a potential application for oral healthcare, a number of analogues with various substituents on the 2,3-pyrrolidinedione core were investigated for their antimicrobial and antifungal activities. The most promising compound showed a significant antimicrobial activity on Streptococcus mutans and Candida albicans, comparable to that of chlorhexidine, the gold standard in oral healthcare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.