Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.
Methods Volatomic analysis of urine samples collected from HNC patients (n = 29) and healthy controls (n = 31) was performed using headspace solid phase microextraction coupled to gas chromatography mass spectrometry (GC-MS). Both univariate and multivariate statistical approaches were used to investigate HNC specific volatomic alterations. Results Statistical analysis revealed a total of 28 metabolites with highest contribution towards discrimination of HNC patients from healthy controls (VIP >1, p < 0.05, Log 2 FC ≥0.58/≤−0.57). The discrimination efficiency and accuracy of urinary VOCs was ascertained by ROC curve analysis that allowed the identification of four metabolites viz. 2,6-dimethyl-7-octen-2-ol, 1-butanol, p-xylene and 4-methyl-2-heptanone with highest sensitivity and specificity to discriminate HNC patients from healthy controls. Further, the metabolic pathway analysis identified several dysregulated pathways in HNC patients and their detailed investigations could unravel novel mechanistic insights into the disease pathophysiology. Conclusion Overall, this study provides valuable fingerprint of the volatile profile of HNC patients, which in turn, might help in improving the current understanding of this form of cancer and lead to the development of non-invasive approaches for HNC diagnosis.
Nowadays most of the CNS acting therapeutic molecules are failing in clinical trials due to efflux transporters at the blood brain barrier (BBB) which imparts resistance and poor ADMET properties of these molecules. CNS acting drug molecules interact with the BBB prior to their target site, so there is a need to develop predictive models for BBB permeability which can be used in the initial phases of drug discovery process. Most of the drug molecules are transported to the brain via passive diffusion which is explored extensively; on the other hand, the role of active efflux transporters in BBB permeability is unclear. Our aim is to develop predictive models for BBB permeability that include active efflux transporters. An in silico model has been developed to assess the role of BCRP on BBB permeation. Eight descriptors were selected, which also include BCRP substrate probabilities used for model development and show a relationship between BCRP and logBB. From our analysis, it was found that 11 molecules satisfied all criteria required for BBB permeation but have low logBB values. These 11 molecules are predicted as BCRP substrates from the model developed, suggesting that the molecules are effluxed by the BCRP transporter. This predictive ability was further validated by docking of these 11 molecules into BCRP protein. This study provides a new mechanistic insight into correlation of low logBB values and efflux mechanism of BCRP in BBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.