). † These authors contributed equally to this study. SummaryThe expression profiles of Botrytis-inoculated Arabidopsis plants were studied to determine the nature of the defense transcriptome and to identify genes involved in host responses to the pathogen. Normally resistant Arabidopsis wild-type plants were compared with coi1, ein2, and nahG plants that are defective in various defense responses and/or show increased susceptibility to Botrytis. In wild-type plants, the expression of 621 genes representing approximately 0.48% of the Arabidopsis transcriptome was induced greater than or equal to twofold after infection. Of these 621 Botrytis-induced genes (BIGs), 462 were induced at or before 36 h postinoculation, and may be involved in resistance to the pathogen. The expression of 181 BIGs was dependent on a functional COI1 gene required for jasmonate signaling, whereas the expression of 63 and 80 BIGs were dependent on ethylene (ET) signaling or salicylic acid accumulation, respectively, based on results from ein2 and nahG plants. BIGs encode diverse regulatory and structural proteins implicated in pathogen defense and abiotic and oxidative-stress responses. Thirty BIGs encode putative DNA-binding proteins that belong to ET response, zinc-finger, MYB, WRKY, and HD-ZIP family transcription-factor proteins. Fourteen BIGs were studied in detail to determine their role in resistance to Botrytis. T-DNA insertion alleles of ZFAR1 (At2G40140), the gene encoding a putative zinc-finger protein with ankyrin-repeat domains, showed increased local susceptibility to Botrytis and sensitivity to germination in the presence of abscisic acid (ABA), supporting the role of ABA in mediating responses to Botrytis infection. In addition, two independent T-DNA insertion alleles in the WRKY70 gene showed increased susceptibility to Botrytis. The transcriptional activation of genes involved in plant hormone signaling and synthesis, removal of reactive oxygen species, and defense and abiotic-stress responses, coupled with the susceptibility of the wrky70 and zfar1 mutants, highlights the complex genetic network underlying defense responses to Botrytis in Arabidopsis.
This work examines the role of the Arabidopsis thaliana RING E3 ligase, HISTONE MONOUBIQUITINATION1 (HUB1) in disease resistance. Loss-of-function alleles of HUB1 show increased susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, whereas HUB1 overexpression conferred resistance to B. cinerea. By contrast, responses to the bacterial pathogen Pseudomonas syringae are unaltered in hub1 plants. hub1 mutants have thinner cell walls but increased callose around an infection site. HUB1 acts independently of jasmonate, but ethylene (ET) responses and salicylate modulate the resistance of hub1 mutants to necrotrophic fungi. The ET response factor ETHYLENE INSENSITIVE2 is epistatic to HUB1 for A. brassicicola resistance but additive to HUB1 for B. cinerea resistance. HUB1 interacts with MED21, a subunit of the Arabidopsis Mediator, a conserved complex that regulates RNA polymerase II. RNA interference lines with reduced MED21 expression are highly susceptible to A. brassicicola and B. cinerea, whereas T-DNA insertion alleles are embryonic lethal, suggesting an essential role for MED21. However, HUB1-mediated histone H2B modification is independent of histone H3 and DNA methylation. In sum, histone H2B monoubiquitination is an important chromatin modification with regulatory roles in plant defense against necrotrophic fungi most likely through modulation of gene expression.
Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) regulates immune responses to a distinct class of pathogens. Here, mechanisms underlying BIK1 function and its interactions with other immune response regulators were determined. We describe BIK1 function as a component of ethylene (ET) signaling and PAMP-triggered immunity (PTI) to fungal pathogens. BIK1 in vivo kinase activity increases in response to flagellin peptide (flg22) and the ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC) but is blocked by inhibition of ET perception. BIK1 induction by flg22, ACC, and pathogens is strictly dependent on EIN3, and the bik1 mutation results in altered expression of ET-regulated genes. BIK1 site-directed mutants were used to determine residues essential for phosphorylation and biological functions in planta, including PTI, ET signaling, and plant growth. Genetic analysis revealed flg22-induced PTI to Botrytis cinerea requires BIK1, EIN2, and HUB1 but not genes involved in salicylate (SA) functions. BIK1-mediated PTI to Pseudomonas syringae is modulated by SA, ET, and jasmonate signaling. The coi1 mutation suppressed several bik1 phenotypes, suggesting that COI1 may act as a repressor of BIK1 function. Thus, common and distinct mechanisms underlying BIK1 function in mediating responses to distinct pathogens are uncovered. In sum, the critical role of BIK1 in plant immune responses hinges upon phosphorylation, its function in ET signaling, and complex interactions with other immune response regulators.
Rp1-D21 is a maize auto-active resistance gene conferring a spontaneous hypersensitive response (HR) of variable severity depending on genetic background. We report an association mapping strategy based on the Mutant Assisted Gene Identification and Characterization approach to identify naturally occurring allelic variants associated with phenotypic variation in HR. Each member of a collection of 231 diverse inbred lines of maize constituting a high-resolution association mapping panel were crossed to a parental stock heterozygous for Rp1-D21, and the segregating F 1 generation testcrosses were evaluated for phenotypes associated with lesion severity for 2 years at two locations. A genome-wide scan for associations with HR was conducted with 47,445 SNPs using a linear mixed model that controlled for spurious associations due to population structure. Since the ability to identify candidate genes and the resolution of association mapping are highly influenced by linkage disequilibrium (LD), we examined the extent of genome-wide LD. On average, marker pairs separated by .10 kbp had an r 2 value of ,0.1. Genomic regions surrounding SNPs significantly associated with HR traits were locally saturated with additional SNP markers to establish local LD structure and precisely identify candidate genes. Six significantly associated SNPs at five loci were detected. At each locus, the associated SNP was located within or immediately adjacent to candidate causative genes predicted to play significant roles in the control of programmed cell death and especially in ubiquitin pathway-related processes.T HE hypersensitive response (HR) mechanism is a widespread and important plant defense response. Characterized by a rapid, localized cell death around the point of attempted pathogen penetration, it is a form of programmed cell death and is usually associated with an acute local resistance response and up-regulation of defense response pathways (Coll et al. 2011). HR and associated events are generally initiated by the products of resistance (R) genes, which trigger HR upon the recognition of specific pathogenderived molecules or molecular events (Bent and Mackey 2007). The HR and related responses are generally associated with resistance to biotrophic rather than necrotrophic pathogens. Among the multiple classes of R genes, those that encode proteins possessing a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) are the predominant class (Bent and Mackey 2007).The Rp1 locus on maize chromosome 10 carries multiple tandemly repeated NBS-LRR paralogs, some of which confer resistance to specific races of maize common rust conferred by the fungus Puccini sorghi (Hulbert 1997). The locus is meiotically unstable due to a high frequency of unequal crossovers between paralogs (Sudupak et al. 1993). In one such case, unequal crossing over followed by intragenic recombination resulted in the formation of the chimeric gene Rp1-D21 (Collins et al. 1999;Smith et al. 2010). In the resulting gene product, the recognition an...
BackgroundMany patients with heart failure continue cardiac resynchronization therapy (CRT) after continuous flow left ventricular assist device (CF‐LVAD) implant. We report the first multicenter study to assess the impact of CRT on clinical outcomes in CF‐LVAD patients.Methods and ResultsAnalysis was performed on 488 patients (58±13 years, 81% male) with an implantable cardioverter defibrillator (ICD) (n=223) or CRT‐D (n=265) who underwent CF‐LVAD implantation at 5 centers from 2007 to 2015. Effects of CRT on mortality, hospitalizations, and ventricular arrhythmia incidence were compared against CF‐LVAD patients with an ICD alone. Baseline differences were noted between the 2 groups in age (60±12 versus 55±14, P<0.001) and QRS duration (159±29 versus 126±34, P=0.001). Median biventricular pacing in the CRT group was 96%. During a median follow‐up of 478 days, Kaplan–Meier analysis showed no difference in survival between groups (log rank P=0.28). Multivariate Cox regression demonstrated no survival benefit with type of device (ICD versus CRT‐D; P=0.16), whereas use of amiodarone was associated with increased mortality (hazard ratio 1.77, 95% confidence interval 1.1–2.8, P=0.01). No differences were noted between CRT and ICD groups in all‐cause (P=0.06) and heart failure (P=0.9) hospitalizations, ventricular arrhythmia incidence (43% versus 39%, P=0.3), or ICD shocks (35% versus 29%, P=0.2). During follow‐up, 69 (26%) patients underwent pulse generator replacement in the CRT‐D group compared with 36 (15.5%) in the ICD group (P=0.003).ConclusionsIn this large, multicenter CF‐LVAD cohort, continued CRT was not associated with improved survival, hospitalizations, incidence of ventricular arrhythmia and ICD therapies, and was related to a significantly higher number of pulse generator changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.