Background In the field of movement disorders, what you see (phenotype) is seldom what you get (genotype). Whereas 1 phenotype was previously associated to 1 gene, the advent of next‐generation sequencing (NGS) has facilitated an exponential increase in disease‐causing genes and genotype–phenotype correlations, and the “one‐phenotype‐many‐genes” paradigm has become prominent. Objectives To highlight the “one‐phenotype‐many‐genes” paradigm by discussing the main challenges, perspectives on how to address them, and future directions. Methods We performed a scoping review of the various aspects involved in identifying the underlying molecular cause of a movement disorder phenotype. Results The notable challenges are (1) the lack of gold standards, overlap in clinical spectrum of different movement disorders, and variability in the interpretation of classification systems; (2) selecting which patients benefit from genetic tests and the choice of genetic testing; (3) problems in the variant interpretation guidelines; (4) the filtering of variants associated with disease; and (5) the lack of standardized, complete, and up‐to‐date gene lists. Perspectives to address these include (1) deep phenotyping and genotype–phenotype integration, (2) adherence to phenotype‐specific diagnostic algorithms, (3) implementation of current and complementary bioinformatic tools, (4) a clinical‐molecular diagnosis through close collaboration between clinicians and genetic laboratories, and (5) ongoing curation of gene lists and periodic reanalysis of genetic sequencing data. Conclusions Despite the rapidly emerging possibilities of NGS, there are still many steps to take to improve the genetic diagnostic yield. Future directions, including post‐NGS phenotyping and cohort analyses enriched by genotype–phenotype integration and gene networks, ought to be pursued to accelerate identification of disease‐causing genes and further improve our understanding of disease biology.
Many predictive models exist that predict risk of common cardiometabolic conditions. However, a vast majority of these models do not include genetic risk scores and do not distinguish between clinical risk requiring medical or pharmacological interventions and pre-clinical risk, where lifestyle interventions could be first-choice therapy. In this study, we developed, validated, and compared the performance of three decision rule algorithms including biomarkers, physical measurements, and genetic risk scores for incident coronary artery disease (CAD), diabetes (T2D), and hypertension against commonly used clinical risk scores in 60,782 UK Biobank participants. The rules models were tested for an association with incident CAD, T2D, and hypertension, and hazard ratios (with 95% confidence interval) were calculated from survival models. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), and Net Reclassification Index (NRI). The higher risk group in the decision rules model had a 40-, 40.9-, and 21.6-fold increased risk of CAD, T2D, and hypertension, respectively (p < 0.001 for all). Risk increased significantly between the three strata for all three conditions (p < 0.05). Based on genetic risk alone, we identified not only a high-risk group, but also a group at elevated risk for all health conditions. These decision rule models comprising blood biomarkers, physical measurements, and polygenic risk scores moderately improve commonly used clinical risk scores at identifying individuals likely to benefit from lifestyle intervention for three of the most common lifestyle-related chronic health conditions. Their utility as part of digital data or digital therapeutics platforms to support the implementation of lifestyle interventions in preventive and primary care should be further validated.
The growing public interest in genetic risk scores for various health conditions can be harnessed to inspire preventive health action. However, current commercially available genetic risk scores can be deceiving as they do not consider other, easily attainable risk factors, such as sex, BMI, age, smoking habits, parental disease status and physical activity. Recent scientific literature shows that adding these factors can improve PGS based predictions significantly. However, implementation of existing PGS based models that also consider these factors requires reference data based on a specific genotyping chip, which is not always available. In this paper, we offer a method naïve to the genotyping chip used. We train these models using the UK Biobank data and test these externally in the Lifelines cohort. We show improved performance at identifying the 10% most at-risk individuals for type 2 diabetes (T2D) and coronary artery disease (CAD) by including common risk factors. Incidence in the highest risk group increases from 3.0- and 4.0-fold to 5.8 for T2D, when comparing the genetics-based model, common risk factor-based model and combined model, respectively. Similarly, we observe an increase from 2.4- and 3.0-fold to 4.7-fold risk for CAD. As such, we conclude that it is paramount that these additional variables are considered when reporting risk, unlike current practice with current available genetic tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.