The signaling cascades triggered by the cross-linkage of immunoglobulin E (IgE) with its high-affinity receptor (FcεRI) on mast cells contribute to multiple allergic disorders, such as asthma, rhinitis, and atopic dermatitis. Restraint of intracellular signals for mast cell activation is essential to restore homeostasis. In this study, we found that Raf kinase inhibitor protein (RKIP) negatively regulated mast cell activation. RKIP-deficient mast cells showed greater IgE−FcεRI-mediated activation than wild-type mast cells. Consistently, RKIP deficiency in mast cells rendered mice more sensitive to IgE−FcεRI-mediated allergic responses and ovalbumin-induced airway inflammation. Mechanistically, RKIP interacts with the p85 subunit of PI3K, prevents it from binding to GRB2-associated binding protein 2 (Gab2), and eventually inhibits the activation of the PI3K/Akt/NF-κB complex and its downstream signaling. Furthermore, the expression of RKIP was significantly down-regulated in the peripheral blood of asthma patients and in the IgE−FcεRI-stimulated mast cells. Collectively, our findings not only suggest that RKIP plays an important role in controlling mast cell-mediated allergic responses but also provide insight into therapeutic targets for mast cell-related allergic diseases.
Interleukin 17 (IL-17) is an important inducer of tissue inflammation and is involved in numerous autoimmune diseases. However, how its signal transduction is regulated is not well understood. Here, we report that nuclear Dbf2-related kinase 1 (NDR1) functions as a positive regulator of IL-17 signal transduction and IL-17-induced inflammation. NDR1 deficiency or knockdown inhibits the IL-17-induced phosphorylation of p38, ERK1/2, and p65 and the expression of chemokines and cytokines, whereas the overexpression of NDR1 promotes IL-17-induced signaling independent of its kinase activity. Mechanistically, NDR1 interacts with TRAF3 and prevents its binding to IL-17R, which promotes the formation of an IL-17R-Act1-TRAF6 complex and downstream signaling. Consistent with this, IL-17-induced inflammation is significantly reduced in deficient mice, and NDR1 deficiency significantly protects mice from MOG-induced experimental autoimmune encephalomyelitis (EAE) and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis likely by its inhibition of IL-17-mediated signaling pathway. NDR1 expression is increased in the colons of ulcerative colitis (UC) patients. Taken together, these findings suggest that NDR1 is involved in the development of autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.