The main purpose of this paper is to study extension of the extended beta function by Shadab et al. by using 2-parameter Mittag-Leffler function given by Wiman. In particular, we study some functional relations, integral representation, Mellin transform and derivative formulas for this extended beta function.
The main aim of this article is to study an extension of the Beta and Gamma matrix functions by using a two-parameter Mittag-Leffler matrix function. In particular, we investigate certain properties of these extended matrix functions such as symmetric relation, integral representations, summation relations, generating relation and functional relation.
The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative formulas for these extended functions are derived. We also introduce the logarithmic convexity and some important inequalities for extended beta function.
Hypergeometric functions and their inequalities have found frequent applications in various fields of mathematical sciences. Motivated by the above, we set up certain inequalities including extended type Gauss hypergeometric function and confluent hypergeometric function, respectively, by virtue of Hölder integral inequality and Chebyshev’s integral inequality. We also studied the monotonicity, log-concavity, and log-convexity of extended hypergeometric functions, which are derived by using the inequalities on an extended beta function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.