This paper presents a fractal model to describe wettability on multiscale randomly rough surfaces. Hydrophobic or superhydrophobic surfaces, produced by processes such as electrodeposition and etching, lead to the creation of random roughness at multiple length scales on the surface. This paper considers the description of such surfaces with a fractal asperity model based on the Weierstrass-Mandelbrot (W-M) function, where the fractal parameters are uniquely determined from a power spectrum of the surface. By use of this description, a model is presented to evaluate the apparent contact angle in the different wetting regimes. The model is predictive in that it does not use any empirical or correlatory fitting of parameters to experimental data. Experimental validation of the model predictions is presented on various hydrophobic and superhydrophobic surfaces generated on several materials under different processing conditions. The contact angle is found be strongly dependent on the range of asperity length scale and weakly dependent on the fractal dimension for a surface with stable Cassie state. Based on the fractal description, desired surface roughness characteristics for generating superhydrophobicity on a particular substrate are also derived.
We report an effective route to prepare highly conducting and flexible few-walled carbon nanotube (FWNT) thin films. The free-standing thin films were fabricated by functionalizing FWNTs with 4-ethoxybenzoic acid (EBA) via a direct Friedel-Crafts acylation reaction in a nondestructive polyphosphoric acid/phosphorus pentoxide medium. The resulting ethoxybenzoyl-functionalized FWNT (EBA-f-FWNT) was readily dispersible in water. EBA-f-FWNT thin films were formed by a simple suction filtration of the dispersed solution. Electron microscopic studies were employed to characterize the morphologies of the resulting thin films. The obtained results indicate that the structure of FWNTs was not perturbed by the incorporation of EBA moieties, which were uniformly grafted onto FWNTs forming the FWNT networks. Room temperature electrical conductivity of the thin films was obtained using standard four-probe measurements, which revealed a value as high as 29 400 S m(-1), while the tensile strength and modulus of the film were found to be about 80 MPa and 15 GPa, respectively. Cyclic voltammograms revealed a rectangular shape, with superior capacitive behaviors nearing 133 F/g for the thin films, which is very attractive for capacitor applications.
Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been limited by their poor mechanical durability and longevity. We present a low-cost, facile process to develop superhydrophobic copper-based coatings via an electrodeposition route, that addresses this limitation. Through electrodeposition, a stable, multiscale, cauliflower shaped fractal morphology was obtained and upon modification by stearic acid, the prepared coatings show extreme water repellency with contact angle of 162 ± 2° and roll-off angle of about 3°. Systematic studies are presented on coatings fabricated under different processing conditions to demonstrate good durability, mechanical and underwater stability, corrosion resistance, and self-cleaning effect. The study also presents an approach for rejuvenation of slippery superhydrophobic nature (roll-off angle <10°) on the surfaces after long-term water immersion. The presented process can be scaled to larger, durable coatings with controllable wettability for diverse applications.
Conventional dry‐jet wet fiber spinning techniques were used to fabricate continuous PAN/MWNT composite fibers with up to 20 wt.‐% nanotube loading. PAN at the MWNT interface exhibited lower solubility under thermodynamically favorable conditions than in bulk PAN, indicating good interfacial interaction. Due to the PAN/MWNT interaction at the interface, thermal shrinkage decreases with increasing MWNT loading (5 to 20 wt.‐%). For high MWNT loadings, PAN/MWNT composite fiber at 15 wt.‐% MWNT loading showed an axial electrical conductivity of 1.24 S · m−1. For all loadings, PAN/MWNT composite fibers exhibited higher tensile moduli than theoretically predicted by rule‐of‐mixture calculations, suggesting good reinforcement of the PAN by MWNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.