Recently, the whole world became infected by the newly discovered coronavirus (COVID-19). SARS-CoV-2, or widely known as COVID-19, has proved to be a hazardous virus severely affecting the health of people. It causes respiratory illness, especially in people who already suffer from other diseases. Limited availability of test kits as well as symptoms similar to other diseases such as pneumonia has made this disease deadly, claiming the lives of millions of people. Artificial intelligence models are found to be very successful in the diagnosis of various diseases in the biomedical field In this paper, an integrated stacked deep convolution network InstaCovNet-19 is proposed. The proposed model makes use of various pre-trained models such as ResNet101, Xception, InceptionV3, MobileNet, and NASNet to compensate for a relatively small amount of training data. The proposed model detects COVID-19 and pneumonia by identifying the abnormalities caused by such diseases in Chest X-ray images of the person infected. The proposed model achieves an accuracy of 99.08% on 3 class (COVID-19, Pneumonia, Normal) classification while achieving an accuracy of 99.53% on 2 class (COVID, NON-COVID) classification. The proposed model achieves an average recall, F1 score, and precision of 99%, 99%, and 99%, respectively on ternary classification, while achieving a 100% precision and a recall of 99% on the binary class., while achieving a 100% precision and a recall of 99% on the COVID class. InstaCovNet-19’s ability to detect COVID-19 without any human intervention at an economical cost with high accuracy can benefit humankind greatly in this age of Quarantine.
Background: Real-time surveillance in the field of health informatics has emerged as a growing domain of interest among worldwide researchers. Evolution in this field has helped in the introduction of various initiatives related to public health informatics. Surveillance systems in the area of health informatics utilizing social media information have been developed for early prediction of disease outbreaks and to monitor diseases. In the past few years, the availability of social media data, particularly Twitter data, enabled real-time syndromic surveillance that provides immediate analysis and instant feedback to those who are charged with follow-ups and investigation of potential outbreaks. In this paper, we review the recent work, trends, and machine learning(ML) text classification approaches used by surveillance systems seeking social media data in the healthcare domain. We also highlight the limitations and challenges followed by possible future directions that can be taken further in this domain. Methods: To study the landscape of research in health informatics performing surveillance of the various healthrelated data posted on social media or web-based platforms, we present a bibliometric analysis of the 1240 publications indexed in multiple scientific databases (IEEE, ACM Digital Library, ScienceDirect, PubMed) from the year 2010-2018. The papers were further reviewed based on the various machine learning algorithms used for analyzing health-related text posted on social media platforms. Findings:: Based on the corpus of 148 selected articles, the study finds the types of social media or web-based platforms used for surveillance in the healthcare domain, along with the health topic(s) studied by them. In the corpus of selected articles, we found 26 articles were using machine learning technique. These articles were studied to find commonly used ML techniques. The majority of studies (24%) focused on the surveillance of flu or influenza-like illness (ILI). Twitter (64%) is the most popular data source to perform surveillance research using social media text data, and Support Vector Machine (SVM) (33%) being the most used ML algorithm for text classification. Conclusions: The inclusion of online data in surveillance systems has improved the disease prediction ability over traditional syndromic surveillance systems. However, social media based surveillance systems have many limitations and challenges, including noise, demographic bias, privacy issues, etc. Our paper mentions future directions, which can be useful for researchers working in the area. Researchers can use this paper as a library for social media based surveillance systems in the healthcare domain and can expand such systems by incorporating the future works discussed in our paper. period before the confirmation of a particular disease by any clinical unit or laboratory and to mobilize the rapid response. Surveillance systems are usually concerned with the systematic collection, analysis, and interpretation of the collected data along with the...
Background: The ongoing fight with Novel Corona Virus, getting quick treatment, and rapid diagnosis reports have become an act of high priority. With millions getting infected daily and a fatality rate of 2%, we made it our motive to contribute a little to solve this real-world problem by accomplishing a significant and substantial method for diagnosing COVID-19 patients. Aim: The Exponential growth of COVID-19 cases worldwide has severely affected the health care system of highly populated countries due to proportionally a smaller number of medical practitioners, testing kits, and other resources, thus becoming essential to identify the infected people. Catering to the above problems, the purpose of this paper is to formulate an accurate, efficient, and time-saving method for detecting positive corona patients. Method: In this paper, an Ensemble Deep Convolution Neural Network model “CoVNet-19” is being proposed that can unveil important diagnostic characteristics to find COVID-19 infected patients using X-ray images chest and help radiologists and medical experts to fight this pandemic. Results: The experimental results clearly show that the overall classification accuracy obtained with the proposed approach for three-class classification among COVID-19, Pneumonia, and Normal is 98.28%, along with an average precision and Recall of 98.33% and 98.33%, respectively. Besides this, for binary classification between Non-COVID and COVID Chest X-ray images, an overall accuracy of 99.71% was obtained. Conclusion: Having a high diagnostic accuracy, our proposed ensemble Deep Learning classification model can be a productive and substantial contribution to detecting COVID-19 infected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.