The capability of all-sky microwave radiance assimilation in the Gridpoint Statistical Interpolation (GSI) analysis system has been developed at the National Centers for Environmental Prediction (NCEP). This development effort required the adaptation of quality control, observation error assignment, bias correction, and background error covariance to all-sky conditions within the ensemble–variational (EnVar) framework. The assimilation of cloudy radiances from the Advanced Microwave Sounding Unit-A (AMSU-A) microwave radiometer for ocean fields of view (FOVs) is the primary emphasis of this study. In the original operational hybrid 3D EnVar Global Forecast System (GFS), the clear-sky approach for radiance data assimilation is applied. Changes to data thinning and quality control have allowed all-sky satellite radiances to be assimilated in the GSI. Along with the symmetric observation error assignment, additional situation-dependent observation error inflation is employed for all-sky conditions. Moreover, in addition to the current radiance bias correction, a new bias correction strategy has been applied to all-sky radiances. In this work, the static background error variance and the ensemble spread of cloud water are examined, and the levels of cloud variability from the ensemble forecast in single- and dual-resolution configurations are discussed. Overall, the all-sky approach provides more realistic simulated brightness temperatures and cloud water analysis increments, and improves analysis off the west coasts of the continents by reducing a known bias in stratus. An approximate 10% increase in the use of AMSU-A channels 1–5 and a 12% increase for channel 15 are also observed. The all-sky AMSU-A radiance assimilation became operational in the 4D EnVar GFS system upgrade of 12 May 2016.
A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA’s Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.