the sleeping driver is potentially more likely to cause an accident than the person who speeds up since the driver is the victim of sleepiness. Automobile industry researchers, including manufacturers, seek to solve this issue with various technical solutions that can avoid such a situation. This paper proposes an implementation of a lightweight method to detect driver's sleepiness using facial landmarks and head pose estimation based on neural network methodologies on a mobile device. We try to improve the accurateness by using face images that the camera detects and passes to CNN to identify sleepiness. Firstly, applied a behavioral landmark's sleepiness detection process. Then, an integrated Head Pose Estimation technique will strengthen the system's reliability. The preliminary findings of the tests demonstrate that with real-time capability, more than 86% identification accuracy can be reached in several real-world scenarios for all classes, including with glasses, without glasses, and light-dark background. This work aims to classify drowsiness, warn, and inform drivers, helping them to stop falling asleep at the wheel. The integrated CNN-based method is used to create a high accuracy and simple-to-use real-time driver drowsiness monitoring framework for embedded devices and Android phones
Traffic light detection and back-light recognition are essential research topics in the area of intelligent vehicles because they avoid vehicle collision and provide driver safety. Improved detection and semantic clarity may aid in the prevention of traffic accidents by self-driving cars at crowded junctions, thus improving overall driving safety. Complex traffic situations, on the other hand, make it more difficult for algorithms to identify and recognize objects. The latest state-of-the-art algorithms based on Deep Learning and Computer Vision are successfully addressing the majority of real-time problems for autonomous driving, such as detecting traffic signals, traffic signs, and pedestrians. We propose a combination of deep learning and image processing methods while using the MobileNetSSD (deep neural network architecture) model with transfer learning for real-time detection and identification of traffic lights and back-light. This inference model is obtained from frameworks such as Tensor-Flow and Tensor-Flow Lite which is trained on the COCO data. This study investigates the feasibility of executing object detection on the Raspberry Pi 3B+, a widely used embedded computing board. The algorithm’s performance is measured in terms of frames per second (FPS), accuracy, and inference time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.