ObjectivesTo compare efficacy and safety of sarilumab monotherapy with adalimumab monotherapy in patients with active rheumatoid arthritis (RA) who should not continue treatment with methotrexate (MTX) due to intolerance or inadequate response.MethodsMONARCH was a randomised, active-controlled, double-blind, double-dummy, phase III superiority trial. Patients received sarilumab (200 mg every 2 weeks (q2w)) or adalimumab (40 mg q2w) monotherapy for 24 weeks. The primary end point was change from baseline in 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) at week 24.ResultsSarilumab was superior to adalimumab in the primary end point of change from baseline in DAS28-ESR (−3.28 vs −2.20; p<0.0001). Sarilumab-treated patients achieved significantly higher American College of Rheumatology 20/50/70 response rates (sarilumab: 71.7%/45.7%/23.4%; adalimumab: 58.4%/29.7%/11.9%; all p≤0.0074) and had significantly greater improvement in Health Assessment Questionnaire-Disability Index (p=0.0037). Importantly, at week 24, more patients receiving sarilumab compared with adalimumab achieved Clinical Disease Activity Index remission (7.1% vs 2.7%; nominal p=0.0468) and low disease activity (41.8% vs 24.9%; nominal p=0.0005, supplemental analysis). Adverse events occurred in 63.6% (adalimumab) and 64.1% (sarilumab) of patients, the most common being neutropenia and injection site reactions (sarilumab) and headache and worsening RA (adalimumab). Incidences of infections (sarilumab: 28.8%; adalimumab: 27.7%) and serious infections (1.1%, both groups) were similar, despite neutropenia differences.ConclusionsSarilumab monotherapy demonstrated superiority to adalimumab monotherapy by improving the signs and symptoms and physical functions in patients with RA who were unable to continue MTX treatment. The safety profiles of both therapies were consistent with anticipated class effects.Trial registration numberNCT02332590.
Demyelinating diseases, such as multiple sclerosis, are characterized by inflammatory demyelination and neurodegeneration of the central nervous system. Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future therapy of multiple sclerosis. Oestrogens and oestrogen receptor ligands are promising treatments to prevent multiple sclerosis-induced neurodegeneration. In the present study we investigated the capacity of oestrogen receptor β ligand treatment to affect callosal axon demyelination and stimulate endogenous myelination in chronic experimental autoimmune encephalomyelitis using electrophysiology, electron microscopy, immunohistochemistry and tract-tracing methods. Oestrogen receptor β ligand treatment of experimental autoimmune encephalomyelitis mice prevented both histopathological and functional abnormalities of callosal axons despite the presence of inflammation. Specifically, there were fewer demyelinated, damaged axons and more myelinated axons with intact nodes of Ranvier in oestrogen receptor β ligand-treated mice. In addition, oestrogen receptor β ligand treatment caused an increase in mature oligodendrocyte numbers, a significant increase in myelin sheath thickness and axon transport. Functional analysis of callosal axon conduction showed a significant improvement in compound action potential amplitudes, latency and in axon refractoriness. These findings show a direct neuroprotective effect of oestrogen receptor β ligand treatment on oligodendrocyte differentiation, myelination and axon conduction during experimental autoimmune encephalomyelitis.
The identification of a drug that stimulates endogenous myelination and spares axon degeneration during multiple sclerosis (MS) could potentially reduce the rate of disease progression. Using experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, we have previously shown that prophylactic administration of the estrogen receptor (ER) β ligand 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) decreases clinical disease, is neuroprotective, stimulates endogenous myelination, and improves axon conduction without altering peripheral cytokine production or reducing central nervous system (CNS) inflammation. Here, we assessed the effects of therapeutic DPN treatment during peak EAE disease, which represents a more clinically relevant treatment paradigm. In addition, we investigated the mechanism of action of DPN treatment-induced recovery during EAE. Given that prophylactic and therapeutic treatment with DPN during EAE improved remyelination-induced axon conduction, and that ER (α and β) and membrane (m)ERs are present on oligodendrocyte lineage cells, a direct effect of treatment on oligodendrocytes is likely. DPN treatment of EAE animals resulted in phosphorylated ERβ and activated the phosphatidylinositol 3-kinase (PI3K)/ serine–threonine-specific protein kinase (Akt)/ mammalian target of rapamycin (mTOR) signaling pathway, a pathway required for oligodendrocyte survival and axon myelination. These results, along with our previous studies of prophylactic DPN treatment, make DPN and similar ERβ ligands immediate and favorable therapeutic candidates for demyelinating disease.
The febrile response is one of the most common features of infection and inflammation. However, temperature is rarely a variable in experimental immunological investigations. To determine whether the thermal microenvironment has any immunoregulatory potential in an Ag-dependent response, we applied a mild fever-range whole body hyperthermia (FR-WBH) protocol to BALB/c mice experiencing the contact hypersensitivity (CHS) reaction. We observed that the timing of this FR-WBH treatment relative to the different phases of the CHS response was crucial to the outcome. FR-WBH treatment before sensitization with a 0.5% FITC solution resulted in a depressed CHS response. This appears to be due to direct effects of FR-WBH on epidermal Langerhans cell trafficking to the draining lymph nodes. In contrast, application of FR-WBH directly after application of the elicitation dose of FITC solution resulted in an enhanced reaction. This result correlates with increased homing of lymphocytes to the site of elicitation. Overall, these data have important implications regarding the role of thermal changes experienced during infection and the clinical use of FR-WBH relative to immunotherapeutic strategies.
Sex differences in the structure and organization of the corpus callosum (CC) can be attributed to genetic, hormonal, or environmental effects, or a combination of these factors. To address the role of gonadal hormones on axon myelination functional axon conduction and immunohistochemistry analysis of the CC in intact, gonadectomized, and hormone-replaced gonadectomized animals were used. These groups were subjected to cuprizone diet-induced demyelination followed by remyelination. The myelinated component of callosal compound action potential was significantly decreased in ovariectomized and castrated animals. Compared to gonadally intact cohorts, both gonadectomized groups displayed more severe demyelination and inhibited remyelination. Castration in males was more deleterious than ovariectomy in females. Callosal conduction in estradiol-supplemented ovariectomized females was significantly increased during normal myelination less attenuated during demyelination and increased beyond placebo-treated ovariectomized or intact female levels during remyelination. In castrated males, the non-aromatizing steroid dihydrotestosterone was less efficient than testosterone and estradiol in restoring normal myelination/axon conduction and remyelination to levels of intact males. Furthermore, in both sexes, estradiol supplementation in gonadectomized groups increased the number of oligodendrocytes. These studies suggest an essential role of estradiol to bring forth efficient CC myelination and axon conduction in both sexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.