Aims Proof of concept and feasibility study for preoperative diagnostic use of mixed reality (MR) holograms of individual 3D heart models from standard cardiac computed tomography angiograms (CTA) images. Optimal repair for complex congenital heart disease poses high demands on 3D anatomical imagination. Three-dimensional printed heart models are increasingly used for improved morphological understanding during surgical and interventional planning. Holograms are a dynamic and interactive alternative, probably with wider applications. Methods and results A 3D heart model was segmented from CTA images in a patient with double outlet right ventricle and transposition of the great arteries (DORV-TGA). The hologram was visualized in the wearable MR platform HoloLens® for 36 paediatric heart team members who filled out a diagnostic and quality rating questionnaire. Morphological and diagnostic output from the hologram was assessed and the 3D experience was evaluated. Locally developed app tools such as hologram rotation, scaling, and cutting were rated. Anatomy identification and diagnostic output was high as well as rating of 3D experience. Younger and female users rated the app tools higher. Conclusion This preliminary study demonstrates that MR holograms as surgical planning tool for congenital heart disease may have a high diagnostic value and contribute to understanding complex morphology. The first users experience of the hologram presentation was found to be very positive, with a preference among the female and the younger users. There is potential for improvement of the hologram manipulation tools.
Introduction: In liver surgery, medical images from pre-operative computed tomography and magnetic resonance imaging are the basis for the decision-making process. These images are used in surgery planning and guidance, especially for parenchyma-sparing hepatectomies. Though medical images are commonly visualized in two dimensions (2D), surgeons need to mentally reconstruct this information in three dimensions (3D) for a spatial understanding of the anatomy. The aim of this work is to investigate whether the use of a 3D model visualized in mixed reality with Microsoft HoloLens increases the spatial understanding of the liver, compared to the conventional way of using 2D images. Material and methods: In this study, clinicians had to identify liver segments associated to lesions. Results: Twenty-eight clinicians with varying medical experience were recruited for the study. From a total of 150 lesions, 89 were correctly assigned without significant difference between the modalities. The median time for correct identification was 23.5 [4-138] s using the magnetic resonance imaging images and 6.00 [1-35] s using HoloLens (p < 0.001). Conclusions: The use of 3D liver models in mixed reality significantly decreases the time for tasks requiring a spatial understanding of the organ. This may significantly decrease operating time and improve use of resources.
Conventional surgical navigation systems rely on preoperative imaging to provide guidance. In laparoscopic liver surgery, insufflation of the abdomen (pneumoperitoneum) can cause deformations on the liver, introducing inaccuracies in the correspondence between the preoperative images and the intraoperative reality. This study evaluates the improvements provided by intraoperative imaging for laparoscopic liver surgical navigation, when displayed as augmented reality (AR). Significant differences were found in terms of accuracy of the AR, in favor of intraoperative imaging. In addition, results showed an effect of user-induced error: image-to-patient registration based on annotations performed by clinicians caused 33% more inaccuracy as compared to image-to-patient registration algorithms that do not depend on user annotations. Hence, to achieve accurate surgical navigation for laparoscopic liver surgery, intraoperative imaging is recommendable to compensate for deformation. Moreover, user annotation errors may lead to inaccuracies in registration processes.
Purpose This study presents a novel surgical navigation tool developed in mixed reality environment for orthopaedic surgery. Joint and skeletal deformities affect all age groups and greatly reduce the range of motion of the joints. These deformities are notoriously difficult to diagnose and to correct through surgery. Method We have developed a surgical tool which integrates surgical instrument tracking and augmented reality through a head mounted display. This allows the surgeon to visualise bones with the illusion of possessing “X-ray” vision. The studies presented below aim to assess the accuracy of the surgical navigation tool in tracking a location at the tip of the surgical instrument in holographic space. Results Results show that the average accuracy provided by the navigation tool is around 8 mm, and qualitative assessment by the orthopaedic surgeons provided positive feedback in terms of the capabilities for diagnostic use. Conclusions More improvements are necessary for the navigation tool to be accurate enough for surgical applications, however, this new tool has the potential to improve diagnostic accuracy and allow for safer and more precise surgeries, as well as provide for better learning conditions for orthopaedic surgeons in training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.