The human body is a template for many state-of-the-art prosthetic devices and sensors. Perceptions of touch and pain are fundamental components of our daily lives that convey valuable information about our environment while also providing an element of protection from damage to our bodies. Advances in prosthesis designs and control mechanisms can aid an amputee's ability to regain lost function but often lack meaningful tactile feedback or perception. Through transcutaneous electrical nerve stimulation (TENS) with an amputee, we discovered and quantified stimulation parameters to elicit innocuous (nonpainful) and noxious (painful) tactile perceptions in the phantom hand. Electroencephalography (EEG) activity in somatosensory regions confirms phantom hand activation during stimulation. We invented a multilayered electronic dermis (e-dermis) with properties based on the behavior of mechanoreceptors and nociceptors to provide neuromorphic tactile information to an amputee. Our biologically inspired e-dermis enables a prosthesis and its user to perceive a continuous spectrum from innocuous to noxious touch through a neuromorphic interface that produces receptor-like spiking neural activity. In a pain detection task (PDT), we show the ability of the prosthesis and amputee to differentiate nonpainful or painful tactile stimuli using sensory feedback and a pain reflex feedback control system. In this work, an amputee can use perceptions of touch and pain to discriminate object curvature, including sharpness. This work demonstrates possibilities for creating a more natural sensation spanning a range of tactile stimuli for prosthetic hands.
We assessed the ability of four transradial amputees to control a virtual prosthesis capable of nine classes of movement both before and after a two-week training period. Subjects attended eight one-on-one training sessions that focused on improving the consistency and distinguishability of their hand and wrist movements using visual biofeedback from a virtual prosthesis. The virtual environment facilitated the precise quantification of three prosthesis control measures. During a final evaluation, the subject population saw an average increase in movement completion percentage from 70.8% to 99.0%, an average improvement in normalized movement completion time from 1.47 to 1.13, and an average increase in movement classifier accuracy from 77.5% to 94.4% (p<0.001). Additionally, all four subjects were reevaluated after eight elapsed hours without retraining the classifier, and all subjects demonstrated minimal decreases in performance. Our analysis of the underlying sources of improvement for each subject examined the sizes and separation of high-dimensional data clusters and revealed that each subject formed a unique and effective strategy for improving the consistency and/or distinguishability of his or her phantom limb movements. This is the first longitudinal study designed to examine the effects of user training in the implementation of pattern recognition-based myoelectric prostheses.
This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.