The routing of traffic between Internet domains, or Autonomous Systems (ASs), a task known as interdomain routing, is currently handled by the Border Gateway Protocol (BGP). In this paper, we address the problem of interdomain routing from a mechanism-design point of view. The application of mechanism-design principles to the study of routing is the subject of earlier work by Nisan and Ronen [16] and Hershberger and Suri [12]. In this paper, we formulate and solve a version of the routing-mechanism design problem that is different from the previously studied version in three ways that make it more accurately reflective of real-world interdomain routing: (1) we treat the nodes as strategic agents, rather than the links; (2) our mechanism computes lowest-cost routes for all source-destination pairs and payments for transit nodes on all of the routes (rather than computing routes and payments for only one source-destination pair at a time, as is done in [12,16]);(3) we show how to compute our mechanism with a distributed algorithm that is a straightforward extension to BGP and causes only modest increases in routing-table size and convergence time (in contrast with the centralized algorithms used in [12,16]). This approach of using an existing protocol as a substrate for distributed computation may prove useful in future development of Internet algorithms generally, not only for routing or pricing problems. Our design and analysis of a strategyproof, BGP-based routing mechanism provides a new, promising direction in distributed algorithmic mechanism design, which has heretofore been focused mainly on multicast cost sharing.
The routing of traffic between Internet domains or Autonomous Systems (ASs), a task known as interdomain routing, is currently handled by the Border Gateway Protocol (BGP). In this paper, we address the problem of interdomain routing from a mechanism-design point of view. The application of mechanism-design principles to the study of routing is the subject of earlier work by Nisan and Ronen [14] and Hershberger and Suri [10]. In this paper, we formulate and solve a version of the routing-mechanism design problem that is different from the previously studied version in three ways that make it more accurately reflective of real-world interdomain routing: (1) we treat the nodes as strategic agents, rather than the links; (2) our mechanism computes lowestcost routes for all source-destination pairs and payments for transit nodes on all of the routes (rather than computing routes and payments for only one source-destination pair at a time, as is done in [13,10] ); (3) we show how to compute our mechanism with a distributed algorithm that is a straightforward extension to B G P and causes only modest*--485-1/02/0007...$5.00.increases in routing-table size and convergence time (in contrast with the centralized algorithms used in [14,10]). This approach of using an existing protocol as a substrate for distributed computation may prove useful in future development of Interact algorithms generally, not only for routing or pricing problems. Our design and analysis of a strategyproof, BGP-based routing mechanism provides a new, promising direction in distributed algorithmic mechanism design, which has heretofore been focused mainly on multicast cost sharing.
We study the equilibrium behavior of informed traders interacting with market scoring rule (MSR) market makers. One attractive feature of MSR is that it is myopically incentive compatible: it is optimal for traders to report their true beliefs about the likelihood of an event outcome provided that they ignore the impact of their reports on the profit they might garner from future trades. In this paper, we analyze non-myopic strategies and examine what information structures lead to truthful betting by traders. Specifically, we analyze the behavior of risk-neutral traders with incomplete information playing in a dynamic game. We consider finite-stage and infinite-stage game models. For each model, we study the logarithmic market Preliminary versions of some of the results in this paper were presented in two conference papers, Chen et al. [10] and Dimitrov and Sami [13]. Algorithmica (2010) 58: 930-969 931scoring rule (LMSR) with two different information structures: conditionally independent signals and (unconditionally) independent signals. In the finite-stage model, when signals of traders are independent conditional on the state of the world, truthful betting is a Perfect Bayesian Equilibrium (PBE). Moreover, it is the unique Weak Perfect Bayesian Equilibrium (WPBE) of the game. In contrast, when signals of traders are unconditionally independent, truthful betting is not a WPBE. In the infinite-stage model with unconditionally independent signals, there does not exist an equilibrium in which all information is revealed in a finite amount of time. We propose a simple discounted market scoring rule that reduces the opportunity for bluffing strategies. We show that in any WPBE for the infinite-stage market with discounting, the market price converges to the fully-revealing price, and the rate of convergence can be bounded in terms of the discounting parameter. When signals are conditionally independent, truthful betting is the unique WPBE for the infinite-stage market with and without discounting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.